欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

1334. Find the City With the Smallest Number of Neighbors at a Threshold Distance

程序员文章站 2024-03-17 14:13:25
...

Source: https://leetcode.com/contest/weekly-contest-173/problems/find-the-city-with-the-smallest-number-of-neighbors-at-a-threshold-distance/

There are n cities numbered from 0 to n-1. Given the array edges where edges[i] = [fromi, toi, weighti] represents a bidirectional and weighted edge between cities fromi and toi, and given the integer distanceThreshold.

Return the city with the smallest number of cities that are reachable through some path and whose distance is at most distanceThreshold, If there are multiple such cities, return the city with the greatest number.

Notice that the distance of a path connecting cities i and j is equal to the sum of the edges’ weights along that path.

Example 1:

1334. Find the City With the Smallest Number of Neighbors at a Threshold Distance

Input: n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4
Output: 3
Explanation: The figure above describes the graph.
The neighboring cities at a distanceThreshold = 4 for each city are:
City 0 -> [City 1, City 2]
City 1 -> [City 0, City 2, City 3]
City 2 -> [City 0, City 1, City 3]
City 3 -> [City 1, City 2]
Cities 0 and 3 have 2 neighboring cities at a distanceThreshold = 4, but we have to return city 3 since it has the greatest number.

Example 2:

1334. Find the City With the Smallest Number of Neighbors at a Threshold Distance

Input: n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2
Output: 0
Explanation: The figure above describes the graph.
The neighboring cities at a distanceThreshold = 2 for each city are:
City 0 -> [City 1]
City 1 -> [City 0, City 4]
City 2 -> [City 3, City 4]
City 3 -> [City 2, City 4]
City 4 -> [City 1, City 2, City 3]
The city 0 has 1 neighboring city at a distanceThreshold = 2.

Constraints:

2 <= n <= 100
1 <= edges.length <= n * (n - 1) / 2
edges[i].length == 3
0 <= fromi < toi < n
1 <= weighti, distanceThreshold <= 10^4
All pairs (fromi, toi) are distinct.

思路:求出所有点之间最短路径长度,从而计算从各顶点出发可到达的distanceThreshold以内的点的数量,找出最大的即可,一样大的也更新,因为要下标大的。

class Solution {
public:
    int adjmat[100][100];
    int dist[100][100];
    int mark[100];
    int num[100];
    void computedist(int n, int s){
        memset(mark,0,sizeof(mark));
        mark[s]=1;
        for(int i=0;i<n;i++){
            dist[s][i]=adjmat[s][i];
        }
        dist[s][s]=0;
        
        for(int k=0;k<n;k++){
            int mindist=0x3f3f3f3f;
            int minidx;
            for(int i=0;i<n;i++){
                if(dist[s][i]!=0x3f3f3f3f && mark[i]==0 && dist[s][i]<mindist){
                    mindist=dist[s][i];
                    minidx=i;
                }
            }
            mark[minidx]=1;
            for(int i=0;i<n;i++){
                if(adjmat[minidx][i]!=0x3f3f3f3f && mark[i]==0 && adjmat[minidx][i]+dist[s][minidx]<dist[s][i]){
                    dist[s][i]=adjmat[minidx][i]+dist[s][minidx];
                }
            }
            
        }
    }
    int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) {
        int numedge=edges.size();
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                adjmat[i][j]=0x3f3f3f3f;
            }
        }
        for(int i=0;i<numedge;i++){
            adjmat[edges[i][0]][edges[i][1]]=edges[i][2];
            adjmat[edges[i][1]][edges[i][0]]=edges[i][2];
        }
        memset(num,0,sizeof(num));
        int minnum=105;
        int ans;
        for(int i=0;i<n;i++){
            computedist(n,i);
            for(int j=0;j<n;j++){
                if(dist[i][j]<=distanceThreshold){
                    num[i]++;
                }
            }
            if(num[i]<=minnum){
                minnum=num[i];
                ans=i;
            }
        }
        
        return ans;
    }
};
相关标签: 练习