欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

目标检测实例ssd_detect.py

程序员文章站 2024-03-17 11:47:04
...
# coding: utf-8
# Note: this file is expected to be in {caffe_root}/examples
# ### 1. Setup
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import pylab

plt.rcParams['figure.figsize'] = (10, 10)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

caffe_root = '../'
import os
os.chdir(caffe_root)
import sys
sys.path.insert(0, '/ssda/software/caffe/python')
import caffe
from google.protobuf import text_format
from caffe.proto import caffe_pb2

caffe.set_device(0)
caffe.set_mode_gpu()
labelmap_file = '/ssda/software/caffe/data/BIRD_MEDIUM2017/labelmap_voc.prototxt'
file = open(labelmap_file, 'r')
labelmap = caffe_pb2.LabelMap()
text_format.Merge(str(file.read()), labelmap)


def get_labelname(labelmap, labels):
    num_labels = len(labelmap.item)
    labelnames = []
    if type(labels) is not list:
        labels = [labels]
    for label in labels:
        found = False
        for i in xrange(0, num_labels):
            if label == labelmap.item[i].label:
                found = True
                labelnames.append(labelmap.item[i].display_name)
                break
        assert found == True
    return labelnames


model_def = '/ssda/software/caffe/models/VGGNet/BIRD_MEDIUM2017/SSD_300x300/deploy.prototxt'
model_weights = '/ssda/software/caffe/models/VGGNet/BIRD_MEDIUM2017/SSD_300x300/BIRD2017_SSD_300x300_iter_90000.caffemodel'

net = caffe.Net(model_def, model_weights, caffe.TEST)

# input preprocessing: 'data' is the name of the input blob == net.inputs[0]
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2, 0, 1))
transformer.set_mean('data', np.array([104, 117, 123]))  # mean pixel
transformer.set_raw_scale(
    'data', 255
)  # the reference model operates on images in [0,255] range instead of [0,1]
transformer.set_channel_swap(
    'data',
    (2, 1, 0))  # the reference model has channels in BGR order instead of RGB

# ### 2. SSD detection

# Load an image.

image_resize = 300
net.blobs['data'].reshape(1, 3, image_resize, image_resize)

image = caffe.io.load_image('/ssda/software/caffe/examples/images/bird.jpg')
plt.imshow(image)

# Run the net and examine the top_k results

transformed_image = transformer.preprocess('data', image)
net.blobs['data'].data[...] = transformed_image

# Forward pass.
detections = net.forward()['detection_out']

# Parse the outputs.
det_label = detections[0, 0, :, 1]
det_conf = detections[0, 0, :, 2]
det_xmin = detections[0, 0, :, 3]
det_ymin = detections[0, 0, :, 4]
det_xmax = detections[0, 0, :, 5]
det_ymax = detections[0, 0, :, 6]

# Get detections with confidence higher than 0.6.
top_indices = [i for i, conf in enumerate(det_conf) if conf >= 0.6]

top_conf = det_conf[top_indices]
top_label_indices = det_label[top_indices].tolist()
top_labels = get_labelname(labelmap, top_label_indices)
top_xmin = det_xmin[top_indices]
top_ymin = det_ymin[top_indices]
top_xmax = det_xmax[top_indices]
top_ymax = det_ymax[top_indices]

# Plot the boxes

colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist()

currentAxis = plt.gca()

for i in xrange(top_conf.shape[0]):
    # bbox value
    xmin = int(round(top_xmin[i] * image.shape[1]))
    ymin = int(round(top_ymin[i] * image.shape[0]))
    xmax = int(round(top_xmax[i] * image.shape[1]))
    ymax = int(round(top_ymax[i] * image.shape[0]))
    # score
    score = top_conf[i]
    # label
    label = int(top_label_indices[i])
    label_name = top_labels[i]
    # display info: label score xmin ymin xmax ymax
    display_txt = '%s: %.2f %d %d %d %d' % (label_name, score, xmin, ymin,
                                            xmax, ymax)
    # display_bbox_value = '%d %d %d %d' % (xmin, ymin, xmax, ymax)
    coords = (xmin, ymin), xmax - xmin + 1, ymax - ymin + 1
    color = colors[label]
    currentAxis.add_patch(
        plt.Rectangle(*coords, fill=False, edgecolor=color, linewidth=2))
    currentAxis.text(
        xmin, ymin, display_txt, bbox={'facecolor': color,
                                       'alpha': 0.5})
    # currentAxis.text((xmin+xmax)/2, (ymin+ymax)/2, display_bbox_value, bbox={'facecolor': color, 'alpha': 0.5})
plt.imshow(image)
pylab.show()
相关标签: ssd