欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

407. Trapping Rain Water II

程序员文章站 2024-03-16 20:41:28
...

Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevation map, compute the volume of water it is able to trap after raining.

Note:
Both m and n are less than 110. The height of each unit cell is greater than 0 and is less than 20,000.

Example:

Given the following 3x6 height map:
[
  [1,4,3,1,3,2],
  [3,2,1,3,2,4],
  [2,3,3,2,3,1]
]

Return 4.

这题有点难,一开始打算沿用上一题的思路,找到每个方向上的最大值坐标,根据每个点再最大值上或者下,左或者右,来分析这个点应该被上下左右四个邻居中的哪两个控制增长进水量。后来发现这种条件下改变的状态不具有决定性,周围状态的改变会对这个点的状态继续产生影响,这种思路作罢。
如何计算出具有决定性的状态?这题的讨论区给出了很好的做法,用priority_queue来储存border的所有点,用minheap,这样每次都从边界上的最小值出发,它对它的相邻的点都有决定意义。然后依次扩散,每次都从最小点开始计算。因为这些点的值都不应该再变了,所以他们扩散的影响具有决定意义。

代码:

class cell {
public:
    int row;
    int col;
    int height;
    cell (int r, int c, int h): row(r), col(c), height(h) {}
};
class compLess {
public:
    bool operator () (const cell& a, const cell& b) {
        return a.height > b.height;
    }

};
class Solution {
public:
    int trapRainWater(vector<vector<int>>& heightMap) {
        int nrow = heightMap.size();
        if (nrow < 3) return 0;
        int ncol = heightMap[0].size();
        if (ncol < 3) return 0;

        priority_queue<cell, vector<cell>, compLess> pq;

        for (int i = 0; i < nrow; i++) {
            for (int j = 0; j < ncol; j++) {
                if (i == 0 || i == nrow - 1 || j == 0 || j == ncol - 1) {
                    cell temp = {i, j, heightMap[i][j]};
                    pq.push(temp);
                }
            }
        }

        vector<vector<int>> isVisited(nrow, vector<int>(ncol, 0));
        vector<vector<int>> dir = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};

        int res = 0;
        while (!pq.empty()) {
            auto top = pq.top();
            pq.pop();
            for (auto d : dir) {
                int r = top.row + d[0];
                int c = top.col + d[1];
                if (r > 0 && r < nrow - 1 && c > 0 && c < ncol - 1 && !isVisited[r][c]) {
                    res += max(0, top.height - heightMap[r][c]);
                    isVisited[r][c] = 1;
                    pq.push({r, c, max(top.height, heightMap[r][c])});
                } 
            }
        }


        return res;
    }
};
相关标签: matrix 2d

上一篇: Unity相机碰撞

下一篇: