407. Trapping Rain Water II
程序员文章站
2024-03-16 20:41:28
...
Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevation map, compute the volume of water it is able to trap after raining.
Note:
Both m and n are less than 110. The height of each unit cell is greater than 0 and is less than 20,000.
Example:
Given the following 3x6 height map:
[
[1,4,3,1,3,2],
[3,2,1,3,2,4],
[2,3,3,2,3,1]
]
Return 4.
这题有点难,一开始打算沿用上一题的思路,找到每个方向上的最大值坐标,根据每个点再最大值上或者下,左或者右,来分析这个点应该被上下左右四个邻居中的哪两个控制增长进水量。后来发现这种条件下改变的状态不具有决定性,周围状态的改变会对这个点的状态继续产生影响,这种思路作罢。
如何计算出具有决定性的状态?这题的讨论区给出了很好的做法,用priority_queue来储存border的所有点,用minheap,这样每次都从边界上的最小值出发,它对它的相邻的点都有决定意义。然后依次扩散,每次都从最小点开始计算。因为这些点的值都不应该再变了,所以他们扩散的影响具有决定意义。
代码:
class cell {
public:
int row;
int col;
int height;
cell (int r, int c, int h): row(r), col(c), height(h) {}
};
class compLess {
public:
bool operator () (const cell& a, const cell& b) {
return a.height > b.height;
}
};
class Solution {
public:
int trapRainWater(vector<vector<int>>& heightMap) {
int nrow = heightMap.size();
if (nrow < 3) return 0;
int ncol = heightMap[0].size();
if (ncol < 3) return 0;
priority_queue<cell, vector<cell>, compLess> pq;
for (int i = 0; i < nrow; i++) {
for (int j = 0; j < ncol; j++) {
if (i == 0 || i == nrow - 1 || j == 0 || j == ncol - 1) {
cell temp = {i, j, heightMap[i][j]};
pq.push(temp);
}
}
}
vector<vector<int>> isVisited(nrow, vector<int>(ncol, 0));
vector<vector<int>> dir = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
int res = 0;
while (!pq.empty()) {
auto top = pq.top();
pq.pop();
for (auto d : dir) {
int r = top.row + d[0];
int c = top.col + d[1];
if (r > 0 && r < nrow - 1 && c > 0 && c < ncol - 1 && !isVisited[r][c]) {
res += max(0, top.height - heightMap[r][c]);
isVisited[r][c] = 1;
pq.push({r, c, max(top.height, heightMap[r][c])});
}
}
}
return res;
}
};
上一篇: Unity相机碰撞