欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Unity/C# 求三维空间中两个三角形相交的算法

程序员文章站 2024-03-16 18:24:40
...

原理在这里:https://web.stanford.edu/class/cs277/resources/papers/Moller1997b.pdf
这里有一个老哥写的中文笔记:
https://blog.csdn.net/shenyi0_0/article/details/107831862
这篇论文也有对这个算法的一定解释:
三维网格模型实体布尔运算方法的研究与实现 杨兰

代码如下:

const float Epsilon = 1.0E-10F;
readonly int[][] CrossLines = new int[][]
{
    new int[]{ 0, 2 }, 
    new int[]{ 0, 1 },
    new int[]{ 1, 2 }
};
readonly int[][] LineEndpointPairs = new int[][]
{
    new int[]{ 0, 1 },
    new int[]{ 1, 2 },
    new int[]{ 2, 0 },
};
// Tomas Moller 快速三角形求交算法
var T1 = targetMesh.triangles[i];
var T2 = patternMesh.triangles[j];

var v10 = targetMesh.vertices[T1.p0].pw; //世界坐标
var v11 = targetMesh.vertices[T1.p1].pw;
var v12 = targetMesh.vertices[T1.p2].pw;

var v20 = patternMesh.vertices[T2.p0].pw;
var v21 = patternMesh.vertices[T2.p1].pw;
var v22 = patternMesh.vertices[T2.p2].pw;

var n1 = Vector3.Cross(v11 - v10, v12 - v10);
var n2 = Vector3.Cross(v21 - v20, v22 - v20);

var d = Vector3.Cross(n1, n2);

// 两三角形平行
if (d.magnitude < Epsilon)
{
    continue;
}

var d1 = Vector3.Dot(n1, v10);
var d2 = Vector3.Dot(n2, v20);

var d10 = Vector3.Dot(n2, v10) - d2;
var d11 = Vector3.Dot(n2, v11) - d2;
var d12 = Vector3.Dot(n2, v12) - d2;

var d20 = Vector3.Dot(n1, v20) - d1;
var d21 = Vector3.Dot(n1, v21) - d1;
var d22 = Vector3.Dot(n1, v22) - d1;

var dis1 = new float[]{ d10, d11, d12 };
var dis2 = new float[]{ d20, d21, d22 };

int[] distancesSign1 = new int[3];
int[] distancesSign2 = new int[3];
for (int k = 0; k < 3; k++)
{
    distancesSign1[MathF.Sign(dis1[k]) + 1]++;
    distancesSign2[MathF.Sign(dis2[k]) + 1]++;
}


// 两三角形所在平面不相交
if (distancesSign1.Contains(3) || distancesSign2.Contains(3))
{
    continue;
}

// 单顶点相交,其他部分在同一侧
if (distancesSign1[1] == 1 && distancesSign1.Contains(2))
{
    continue;
}
if (distancesSign2[1] == 1 && distancesSign2.Contains(2))
{
    continue;
}

// 两边都是单顶点相交
if (distancesSign1[1] == 1 && distancesSign2[1] == 1)
{
    continue;
}

//0: p0-p1, 1: p1-p2, 2: p2-p0
int[] l1, l2;
if (distancesSign1[0] == 1) // 一个顶点在平面之下
{
    l1 = CrossLines[Array.FindIndex(dis1, a => a < 0)];
}
else
{
    l1 = CrossLines[Array.FindIndex(dis1, a => a > 0)];
}
if (distancesSign2[0] == 1) // 一个顶点在平面之下
{
    l2 = CrossLines[Array.FindIndex(dis2, a => a < 0)];
}
else
{
    l2 = CrossLines[Array.FindIndex(dis2, a => a > 0)];
}


float[] p1, p2;

if (Mathf.Abs(d.x) >= Mathf.Abs(d.y) && Mathf.Abs(d.x) >= Mathf.Abs(d.z))
{
    p1 = new float[] { v10.x, v11.x, v12.x };
    p2 = new float[] { v20.x, v21.x, v22.x };
}
else if (Mathf.Abs(d.y) >= Mathf.Abs(d.x) && Mathf.Abs(d.y) >= Mathf.Abs(d.z))
{
    p1 = new float[] { v10.y, v11.y, v12.y };
    p2 = new float[] { v20.y, v21.y, v22.y };
}
else
{
    p1 = new float[] { v10.z, v11.z, v12.z };
    p2 = new float[] { v20.z, v21.z, v22.z };
}

var t1 = new float[2];
var t2 = new float[2];

for (int k = 0; k < 2; k++)
{
    var endPoints = LineEndpointPairs[l1[k]];
    t1[k] = p1[endPoints[0]] + (p1[endPoints[1]] - p1[endPoints[0]]) 
        * dis1[endPoints[0]] / (dis1[endPoints[0]] - dis1[endPoints[1]]);
}

for (int k = 0; k < 2; k++)
{
    var endPoints = LineEndpointPairs[l2[k]];
    t2[k] = p2[endPoints[0]] + (p2[endPoints[1]] - p2[endPoints[0]]) 
        * dis2[endPoints[0]] / (dis2[endPoints[0]] - dis2[endPoints[1]]);
}


if ((t1.Max() >= t2.Max() && t1.Min() <= t2.Max()) ||
    (t2.Max() >= t1.Max() && t2.Min() <= t1.Max()))
{
    // 有相交,根据l数组的信息继续求平面交点即可
}
相关标签: unity c# 算法