欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Flink学习-数据流编程模型

程序员文章站 2024-03-16 17:02:04
...

原文地址:https://ci.apache.org/projects/flink/flink-docs-release-1.6/concepts/programming-model.html

 

抽象层次

 

Flink提供不同级别的抽象用于开发流、批处理应用。

 

【配图】

 

最低级别的抽象仅仅提供有状态的流。它通过处理函数嵌入到数据流API中。它允许用户*地处理来自一个或多个流的事件,并使用一致的容错状态。此外,用户可以注册事件时间和处理时间回调,允许程序实现复杂的计算。

 

实际上,大多数应用程序不需要上述低级别抽象,而是根据核心API进行编程,例如数据流API(有界、*流)和数据集API(有界数据集)。这些核心的API为数据处理提供了通用的构建块,例如用户指定的各种形式的transformation、join、aggregation、window、state等。这些API中处理的数据类型表示为各自的编程语言中的类。

在数据流API中集成低级别的处理函数,使得只对某些操作进行低级抽象成为可能。数据流API在有界数据集上提供额外的原语,如循环/迭代。

 

Table API是以表为中心的声明性DSL,当表示为流时,它可以动态的改变表。Table API遵循扩展的关系模型:表具有附加的模式(类似于关系数据库中的表),并且API提供类似的操作,例如select、project、join、group-by、aggregate等。Table API程序声明性地定义应该执行什么逻辑操作,而不是确切的指定执行代码的样子。虽然Table API支持各种类型的用户自定义函数扩展,但是相比于核心API表达性差一些,其优点是使用更简洁(编写代码更少)。此外,Table API程序在执行前可以通过优化器应用优化规则。

使用者可以在Table和DataStream/DataSet之间无缝地转换,允许程序混合使用Table API和DataStream、DataSet API。

 

Flink提供的*别的抽象是SQL。这个抽象在语义和表达性方面与Table API相似,但编程方式是SQL查询表达式。SQL抽象与Table API紧密地相互作用,SQL查询可以在Table API中定义的表上执行。

 

 

程序和数据流

 

Flink程序的基本组成部分是stream和transformation。(注意Flink的DataSet API中使用的数据集也是内部流——稍后有更详细地说明)。从概念上讲,stream是一个(潜在的无止境的)数据记录流,transformation是以一个或多个流作为输入的操作,并产生一个或多个输出流作为结果。

执行时,Flink程序被映射到streaming数据流,由stream和transformation运算符组成。每个数据流从一个或多个源(source)开始,并在一个或多个接收器(sink)中结束。数据流类似于任意有向无环图(DAG)。虽然通过迭代构造器允许特殊形式的循环,但在大多数情况下,我们为了简化将忽略此种情况。

 

【配图】

 

通常,程序中的transformation和数据流中operator存在一一对应关系。然而有些时候,一个transformation可以由多个transformation operator组成。

source和sink的说明在《streaming connector》和《batch connector》文档中。transformation的说明在《dataStream operator》和《dataSet transformation》文档中。

 

并行数据流

 

Flink中的程序本质上是并行的和分布式的。在执行期间,一个stream具有一个或多个流分区(partition),并且每个operator都有一个或多个operator子任务(subtask)。operator子任务彼此独立,并在不同的线程中执行,甚至可能在不同的机器或容器上执行。

operator子任务的数量体现了特定operator的并行度。stream的并行度总是他的生产operator的并行度。同一程序的不同操作符可以具有不同级别的并行度。

stream可以在两个operator之间以一对一模式或者重分配(redistributing)模式传输数据:

    一对一stream(例如,上图中的source和map()操作符之间)保留了元素的分区和排序。这意味着map operator的子任务[1]将按照source operator的子任务[1]产生元素的顺序来处理元素。

    重分配stream(如上面map()和keyBy/window之间,以及keyBy/window和Sink之间)改变了stream的分区。每个operator子任务根据选定的转换将数据发送到不同的目标子任务。例子包括keyBy(根据hash key重分区),broadcast或rebalance(随机重分区)。在重分配交换过程中,元素之间的排序仅保留在每对发送和接收子任务之间(例如,map的subtask[1]和keyBy/window的subtask[2])。因此,在这个示例中,每个key的内部顺序被保留,但是不同key的聚合结果在到达sink时,并行性确实引入了排序的不确定性。

有关配置和控制并行性的详细信息可以查看“parallel execution”文档。

 

窗口(window)

 

聚合事件(例如,count、sum)在流上的工作方式不同于批处理上的工作方式。例如,不可能对流中的所有元素进行计数,因为流一般是无限的(*的)。相反,流上的聚合(count、sum等)由窗口限定范围,例如“最后5分钟计数”或“最后100个元素的和”。

窗口可以是时间驱动的(例如:每30秒)或数据驱动(例如:每100个元素)。通常可以区分不同类型的窗口,例如翻滚窗口(没有重叠)、滑动窗口(有重叠)和会话窗口(被不活动的间隙元素打断)。

 

【配图】

 

可以在本文章中找到更多的window实例。更多的细节,请查看window文档。

 

时间(time)

 

当提到streaming程序中的时间(例如定义window)时,可以理解为不同的时间概念:

1)事件时间是创建事件的时间。通常描述为事件中的时间戳,例如生产消息组件或生产消息服务附加的时间戳。Flink通过时间戳分配器访问事件时间戳。

2)摄取时间指的是事件消息从source operator进入Flink dataflow的时间。

3)处理时间是每个操作符执行基于时间操作的本地时间。

 

【配图】

 

有关如何处理时间的更多细节请查看“事件时间文档”。

 

状态操作

 

虽然数据流中的许多操作每次仅仅处理单个事件消息(例如,事件解析器),但有些操作记住跨多个事件消息(例如,窗口操作符)的信息。这些操作是有状态操作。

状态操作符的状态保存在内嵌的key/value存储中。该状态与状态操作符读取的stream一起被严格的分区(partition)和分布(distribute)处理。因此,只可以在基于key的stream中访问key/value状态,一般在keyBy()函数后,并且仅限于当前事件key的关联的value。key相关的stream和状态的处理方式,可以确保所有状态更新都是本地操作,保证一致性而不会造成事务开销。这种处理方式还允许Flink重新分配状态并透明地调整流分区。

 

【配图】

 

更多信息,请查看“状态”文档。

 

用于容错的checkpoint

 

Flink使用流重放和检查点(checkpoint)的组合来实现容错。检查点与每个输入流中的特定点以及每个操作符的对应状态相关。从检查点可以重新开始处理数据流来维持一致性(准确地说一次处理语义),这需要恢复操作符的状态,并且从检查点重放事件。

检查点间隔时间会影响容错恢复过程的开销,这体现在恢复时间执行的需要重放的事件数量。

容错内部机制的描述提供了关于Flink如何管理检查点和相关topic的更多信息。有关启用和配置检查点的详细信息在“检查点API文档”中。

 

stream的批处理

 

Flink把批处理程序作为特殊的流式程序执行,其中流是有界的(有限数量的元素)。数据集(DataSet)在内部被当做数据流处理。上述概念也以同样的类似于流处理程序的方式应用于批处理程序,只是少数情况下例外:

批处理程序的容错不使用检查点。通过完全重放流才能恢复批处理程序的执行。之所以可行是因为输入是有限的。这会使恢复成本更高,但却使常规处理成本更低,因为它避免了检查点。

DataSet API中的有状态操作使用简化的内存/非核心数据结构,而不是键值索引。

DataSet API引入了特殊的同步(基于超前的)迭代,这只有在有界流上是可能的。有关详细信息,请查看迭代文档。