欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  Java

java 图像的二值化与大津阈值法

程序员文章站 2022-03-20 10:21:39
...
这篇主要关注于图像的二值化,即在灰度化的基础上,进行阈值分割。二值化的方法很多,事实上,在图像进行处理的时候,能够完美的分割出目标区域,那么已经成功了一大半,可见二值化的重要性。本文主要介绍三种二值化方法。

1.固定阈值法,设定好阈值,大于该阈值的像素点设为255,否则为0,这是最简单的,效果也是最不稳定的。
<span style="font-size:14px;"><span style="font-size:10px;">public void SimBinary(){
		toGray();//灰度化
		int Threshold = 128;
		for (int y = 0; y < h; y++) {
                   for (int x = 0; x < w; x++) {
            	      if(data[x + y * w] < Threshold){
            		 data[x + y * w] = 0;

            	      }else{
            		data[x + y * w] = 255;
            	      }
                  }
	       }
					
	}</span></span>

运行效果如下:

java 图像的二值化与大津阈值法

java 图像的二值化与大津阈值法

2.循环法 (参考:图像处理之常见二值化方法汇总)

1. 一个初始化阈值T,可以自己设置或者根据随机方法生成。

2. 根据阈值图每个像素数据P(n,m)分为对象像素数据G1与背景像素数据G2。(n为

行,m为列)

3. G1的平均值是m1, G2的平均值是m2

4. 一个新的阈值T’ = (m1 + m2)/2

5. 回到第二步,用新的阈值继续分像素数据为对象与北京像素数据,继续2~4步,

直到计算出来的新阈值等于上一次阈值。

代码如下:

<span style="font-size:14px;">	public void IterBinary(){
		toGray();
		
		int Threshold = 128;
		int preThreshold = 256;
		
		while (Math.abs(Threshold-preThreshold) > 4){
			int s1 = 0;
			int s2 = 0;
			int f1 = 0;
			int f2 = 0;
			
			for (int y = 0; y < h; y++) {
	                  for (int x = 0; x < w; x++) {
	            	    if(data[x + y * w] < Threshold){
	            		s1 += data[x + y * w];
	            		f1++;
	            	      }else{
	            		s2 += data[x + y * w];
	            		f2++;
	            	      }
	                 }
		       }
			
			preThreshold = Threshold;
			Threshold = (int)((s1/f1+s2/f2)/2);
		 }
		
		for (int y = 0; y < h; y++) {
                   for (int x = 0; x < w; x++) {
            	     if(data[x + y * w] < Threshold){
            		data[x + y * w] = 0;

            	     }else{
            		data[x + y * w] = 255;
            	     }
                  }
	       }
					
	}</span>

效果如下:

java 图像的二值化与大津阈值法

3.大津阈值法(参考:自适应阈值算法(大津阈值法))

最大类间方差法是由日本学者大津于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU。它是按图像的灰度特性,将图像分成背景和目标2部分。背景和目标之间的类间方差越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分为目标都会导致2部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。图像的总平均

灰度记为μ,类间方差记为g。假设图像的背景较暗,并且图像的大小为M×N,图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有:

      ω0=N0/ M×N (1)

      ω1=N1/ M×N (2)

      N0+N1=M×N (3)

      ω0+ω1=1 (4)

      μ=ω0*μ0+ω1*μ1 (5)

      g=ω0(μ0-μ)^2+ω1(μ1-μ)^2 (6)

将式(5)代入式(6),得到等价公式:

g=ω0ω1(μ0-μ1)^2 (7)

采用遍历的方法得到使类间方差最大的阈值T,即为所求。

代码如下:

<span style="font-size:14px;">public void Otsu(){
		toGray();
		int num = h*w;
		int[] hist = hist();
		int sum = math.sum(hist);
		double[] res = new double[256];
		double m1=0,m2=0,w1=0,w2=0;
		
		for(int k=0;k<256;k++){
			for(int i=0;i<k;i++){
				m1 +=hist[i];
			}
			w1 = m1/num;
			w2 = 1-w1;
			m2 = (sum-m1)/(255-k);
			m1 = m1/(k+1);
			res[k] = w1*w2*Math.abs(m1 - m2)*Math.abs(m1 - m2);
		}
		
		int Threshold = math.maxIndex(res); //获得最大值的下标
		
		for (int y = 0; y < h; y++) {
                  for (int x = 0; x < w; x++) {
            	    if(data[x + y * w] < Threshold){
            		data[x + y * w] = 0;

            	    }else{
            		data[x + y * w] = 255;
            	    }
                }
		}
	}</span>

运行效果如下:

java 图像的二值化与大津阈值法

以上就是java 图像的二值化与大津阈值法的内容,更多相关内容请关注PHP中文网(www.php.cn)!