欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

最近点对问题(分治法)

程序员文章站 2024-03-16 09:28:10
...

问题:平面最近点对问题是指:在给出的同一个平面内的所有点的坐标,然后找出这些点中最近的两个点的距离.

代码:

#include <iostream>  
#include <cstdio>  
#include <cstring>  
#include <cmath>  
#include <algorithm>  
using namespace std;
const double inf = 1e20;
const int maxn = 100005;

struct Point{
    double x, y;
}point[maxn];

int n, mpt[maxn];


//以x为基准排序
bool cmpxy(const Point& a, const Point& b){
    if (a.x != b.x)
        return a.x < b.x;
    return a.y < b.y;
}

bool cmpy(const int& a, const int& b){
    return point[a].y < point[b].y;
}

double min(double a, double b){
    return a < b ? a : b;
}

double dis(int i, int j){
    return sqrt((point[i].x - point[j].x)*(point[i].x - point[j].x) + (point[i].y - point[j].y)*(point[i].y - point[j].y));
}

double Closest_Pair(int left, int right){
    double d = inf;
    if (left == right)
        return d;
    if (left + 1 == right)
        return dis(left, right);
    int mid = (left + right) >> 1;
    double d1 = Closest_Pair(left, mid);
    double d2 = Closest_Pair(mid + 1, right);
    d = min(d1, d2);
    int i, j, k = 0;
    //分离出宽度为d的区间  
    for (i = left; i <= right; i++){
        if (fabs(point[mid].x - point[i].x) <= d)
            mpt[k++] = i;
    }
    sort(mpt, mpt + k, cmpy);
    //线性扫描  
    for (i = 0; i < k; i++){
        for (j = i + 1; j < k && point[mpt[j]].y - point[mpt[i]].y<d; j++){
            double d3 = dis(mpt[i], mpt[j]);
            if (d > d3)    d = d3;
        }
    }
    return d;
}

int main(){
    while (~scanf("%d", &n) && n){
        for (int i = 0; i < n; i++)
            scanf("%lf %lf", &point[i].x, &point[i].y);
        sort(point, point + n, cmpxy);
        printf("%.2lf\n", Closest_Pair(0, n - 1) / 2);
    }
    return 0;
}

 

相关标签: 算法设计与分析