最近点对问题(分治法)
程序员文章站
2024-03-16 09:28:10
...
问题:平面最近点对问题是指:在给出的同一个平面内的所有点的坐标,然后找出这些点中最近的两个点的距离.
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const double inf = 1e20;
const int maxn = 100005;
struct Point{
double x, y;
}point[maxn];
int n, mpt[maxn];
//以x为基准排序
bool cmpxy(const Point& a, const Point& b){
if (a.x != b.x)
return a.x < b.x;
return a.y < b.y;
}
bool cmpy(const int& a, const int& b){
return point[a].y < point[b].y;
}
double min(double a, double b){
return a < b ? a : b;
}
double dis(int i, int j){
return sqrt((point[i].x - point[j].x)*(point[i].x - point[j].x) + (point[i].y - point[j].y)*(point[i].y - point[j].y));
}
double Closest_Pair(int left, int right){
double d = inf;
if (left == right)
return d;
if (left + 1 == right)
return dis(left, right);
int mid = (left + right) >> 1;
double d1 = Closest_Pair(left, mid);
double d2 = Closest_Pair(mid + 1, right);
d = min(d1, d2);
int i, j, k = 0;
//分离出宽度为d的区间
for (i = left; i <= right; i++){
if (fabs(point[mid].x - point[i].x) <= d)
mpt[k++] = i;
}
sort(mpt, mpt + k, cmpy);
//线性扫描
for (i = 0; i < k; i++){
for (j = i + 1; j < k && point[mpt[j]].y - point[mpt[i]].y<d; j++){
double d3 = dis(mpt[i], mpt[j]);
if (d > d3) d = d3;
}
}
return d;
}
int main(){
while (~scanf("%d", &n) && n){
for (int i = 0; i < n; i++)
scanf("%lf %lf", &point[i].x, &point[i].y);
sort(point, point + n, cmpxy);
printf("%.2lf\n", Closest_Pair(0, n - 1) / 2);
}
return 0;
}
上一篇: Gson字段解析失败兼容(gson-plugin)
下一篇: p-7-7辗转相除法求解最大公约数