欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

如何在10亿个整数中找出前1000个最大的数(TopN算法)

程序员文章站 2024-03-15 22:18:00
...

面试题目:如何在10亿个整数中找出前1000个最大的数。

我们知道排序算法有很多:

  1.  冒泡算法:通过两层for循环,外层第一次循环找到数组中最大的元素放置在倒数第一个位置,第二次循环找到第二大的元素放置在倒数第二个位置。。。循环N次就可以找到TopN。
    缺点:冒泡排序内层循环需要大量交换元素。复杂度介于O(n)和O(n^2)之间。
  2. 快速排序:选一个基准元素,每次排序可以将这个基准元素搁置在正确的位置,左边都是比基准小的元素,右边都是比基准大的元素从而将数组分成左右两部分,分而治之。TopN问题也同样如此,选择一个基准元素并通过快速排序将基准元素搁置在正确的位置,如果左边的元素个数小于1000,那么继续从基准右边排序,如果左边元素个数大于1000,那么从基准左边排序,直到基准的位置正好在1000,结束。
    缺点:第一次排序复杂度是O(n),第二次排序复杂度是O(n/2),第三次排序复杂度是O(n/4)....
  3. 文件存储,分而治之:

    将比基准小的元素存储在txt1中,比基准大的文件存储在txt2中,然后通过类似方法二的形式,最后求出TopN。

    缺点:磁盘读取,写入次数过多。

  4. MapReduce:单机内存和性能确实受限,那么我们可以将10亿个分段存储在不同的机器上,每台机器计算各自的TopN,最后汇总。
    缺点:空间换时间。

最优解:小顶堆

    在内存中维护一个长度为N的数组,根据堆的性质,每一个节点都比他的左右子节点小,先取出前N个数并构建小顶堆,然后将所有数据与堆顶比较大小,如果比堆顶小就直接丢弃,如果比堆顶大则替换堆顶,并且重新构建这个堆。

    构建小顶堆的过程:先要找到最后一个非叶子节点,数组的长度为6,那么最后一个非叶子节点就是:长度/2-1,也就是6/2-1=2,然后下一步就是比较该节点值和它的左右节点值,如果该节点大于其左\右子树的值就交换(意思就是将最小的值放到该节点)。如果该节点不是叶子结点,则递归这一过程,直到这个节点变成叶子节点。

具体执行代码如下:

import java.util.Random;

/**
 * @author vincent
 * @time 2019-08-07 11:59
 */
public class TopN {
    public static int N = 10;           //Top10
    public static int LEN = 100000000; //1亿个整数
    public static int arrs[] =  new int[LEN];
    public static int result[] = new int[N]; //在内存维护一个长度为N的小顶堆
    public static int len = result.length;
    //堆中元素的有效元素 heapSize<=len
    public static int heapSize = len;
    public static void main(String[] args) {
        //生成随机数组
        for(int i = 0;i<LEN;i++){
            arrs[i] = new Random().nextInt(999999999);
        }

        //构建初始堆
        for(int i =  0;i<N;i++){
            result[i] = arrs[i];
        }
        //构建小顶堆
        long start =System.currentTimeMillis();
        buildMinHeap();
        for(int i = N;i<LEN;i++){
            if(arrs[i] > result[0]){
                result[0] = arrs[i];
                minHeap(0);
            }
        }
        System.out.println(LEN+"个数,求Top"+N+",耗时"+(System.currentTimeMillis()-start)+"毫秒");
        print();
    }


    /**
     * 自底向上构建小堆
     */
    public static void buildMinHeap(){
        int size = len / 2 -1 ; //最后一个非叶子节点
        for(int i = size;i>=0;i--){
            minHeap(i);
        }
    }

    /**
     * i节点为根及子树是一个小堆
     * @param i
     */
    public static void minHeap(int i){
        int l = left(i);
        int r = right(i);
        int index = i;
        if(l<heapSize && result[l]< result[index]){
            index = l;
        }
        if(r<heapSize && result[r]< result[index]){
            index = r;
        }
        if(index != i){
            int t = result[index];
            result[index] = result[i];
            result[i] = t;
            //递归向下构建堆
            minHeap(index);
        }
    }

    /**
     * 返回i节点的左孩子
     * @param i
     * @return
     */
    public static int left(int i){
        return 2*i;
    }

    /**
     * 返回i节点的右孩子
     * @param i
     * @return
     */
    public static int right(int i){
        return 2*i+1;
    }
    /**
     * 打印
     */
    public  static void print(){
        for(int a: result){
            System.out.print(a+",");
        }
        System.out.println();
    }
}

 

转载于:https://my.oschina.net/duanvincent/blog/3085961