欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

聚类分析(二) K-MEANS 博客分类: 数据分析/挖掘 K-MEANS 

程序员文章站 2024-03-15 20:50:54
...

K-means 算法

一般情况,聚类算法可以划分为以下几类:划分方法(partitioning method )、层次方法(hierarchical methods )、基于密度的方法(density-based methods )、基于网格的方法(grid-based methods )、基于模型的方法(model-based methods.k-means 算法属于划分方法中的一种。

K-means 算法的整个流程:首先从聚类对象中随机选出K 个对象作为类簇的质心(当然了,初始参数的K 代表聚类结果的类簇数),对剩余的每个对象,根据它们分别到这个K 个质心的距离,将它们指定到最相似的簇(因为K-means 是利用距离来量化相似度的,所以我们这里可以理解为是“将它们指定到离最近最近距离的质心所属类簇”)。然后重新计算质心位置。以上过程不断反复,直到准则函数收敛为止。通常采用平方误差准则,定义如下:

聚类分析(二) K-MEANS
            
    
    博客分类: 数据分析/挖掘 K-MEANS 

其中,E 代表的意思是所有类簇中各对象到其所属类簇质点平方误差和.

K: 聚类结果类簇个数

Ci: i 个类簇

P :类簇中聚类对象

mi: i 个类簇的质心


K-means 的优点和不足:能处理大型数据集,结果簇相当紧凑,并且簇和簇之间明显分离。计算复杂性O(tkn) t: 迭代次数、K :聚类数 n: 样本数;但是

1) 该算法必须事先给定类簇数和质点,簇数和质点的初始值设定往往会对聚类的算法影响较大。

2 ) 通常会在获得一个局部最优值时停止,

3 ) 并且只适合对数值型数据聚类,

4) 只适用于聚类结果为凸形的数据集,K-means 方法不适合发现非凸面形状的类簇,或者大小差别很大的簇。

5) 噪音 和孤立点数据敏感,少量的该类数据对质点的计算会产生极大的影响。

关于K-means的代码实现网上有很多,java版的本人自己也实现了,有需要则可以留下MAIL。:)

相关标签: K-MEANS