Python实现识别多个条码/二维码(二)
程序员文章站
2024-03-15 17:54:24
...
这篇博客实现的是“Python实现识别多个条码/二维码(一)”未完成的解码任务。由于系统坏了,软件重装等一系列原因,所以拖到现在。。不好意思哈。
在上一篇中我们已经能把两个条形码找出并框起来了,接下来就是要解码。先上代码吧。
from sys import exit
from Image import _ImageCrop
from PIL import Image
import numpy as np
import zbar
import cv2
# 加载图片并把它转换为灰度图片
image = cv2.imread('F:/work/barcode/bar_code/20.jpg')
img = Image.open(r'F:/work/barcode/bar_code/20.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
#cv2.imshow("sobel_Image", gray)
#cv2.waitKey(0)
#使用Canny做边缘检测
gradient = cv2.Canny(gray , 20 ,520)
#cv2.imshow("Canny_Image", gradient)
#cv2.waitKey(0)
(_, thresh) = cv2.threshold(gradient, 225, 255, cv2.THRESH_BINARY) # 二值化
cv2.imshow("threshold_Image", thresh)
#cv2.waitKey(0)
# 构建kernel然后应用到 thresholded 图像上
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (10, 5))#形态学处理,定义矩形结构
closed = cv2.dilate(thresh, kernel, iterations = 1)#膨胀图像,连接断点
#cv2.imshow("dilate_Image", closed)
#cv2.waitKey(0)
im, contours, hierarchy = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
#print contours
x = len(contours)
a = []
s = []
#打印面积
for i in range(0,x):
s.append(cv2.contourArea(contours[i]))
#保留面积大于8000的轮廓
for m in range(0,x):
if s[m] >= 8000 and s[m] <= 25000 :
a.append(s[m])
else:
continue
z = max(a)
#for j in a:
# print "a was : %f",j
for k in range(0,x):
#增加一些筛选条件
if s[k] >= 8000 and s[k] <= 25000 and ((z - s[k]) <= 8500 ) :
rect = cv2.minAreaRect(contours[k])#返回矩形的中心点坐标,长宽,旋转角度
box = np.int0(cv2.boxPoints(rect))
cv2.drawContours(image, [box], -1, (255, 0, 0), 2)#画一个方框把条形码区域圈起来
u,v,w,t = cv2.boundingRect(contours[k]) #获取轮廓坐标
#print u,v,w,t
#根据坐标把条码裁剪下来并保存
o = (u,v,u+w,v+t)
barcode = img.crop(o)
barcode.save(r'F:/work/barcode/bar_code/crop4.jpg')
#print "s : %f",s[k]
#构建解码器
scanner = zbar.ImageScanner()
scanner.parse_config('enable')
pil = Image.open('F:/work/barcode/bar_code/crop4.jpg').convert('L')
width, height = pil.size
#解码
raw = pil.tostring()
image0 = zbar.Image(width, height, 'Y800', raw)
scanner.scan(image0)
for symbol in image0:
print 'decoded', symbol.type, 'symbol', '"%s"' % symbol.data
else:
continue
cv2.imshow("Image", image)
cv2.waitKey(0)
exit(0)
找条码的程序与前文基本相同。解码的实现从获取轮廓坐标开始。其实就是我们把条码从原图上裁剪下来(这里先保存后打开是因为CV2与PIL的交替使用),然后用zabr工具包进行解码。
下面放上结果图
有朋友问我zbar的安装,确实不好找哈,所以这里放上链接~