初学python
python打卡第八天
类与对象
类
类与对象
对象 = 属性 + 方法
对象是类的实例。换句话说,类主要定义对象的结构,然后我们以类为模板创建对象。类不但包含方法定义,而且还包含所有实例共享的数据。
- 封装:信息隐蔽技术
我们可以使用关键字 class
定义 Python 类,关键字后面紧跟类的名称、分号和类的实现。
【例子】
class Turtle: # Python中的类名约定以大写字母开头
"""关于类的一个简单例子"""
# 属性
color = 'green'
weight = 10
legs = 4
shell = True
mouth = '大嘴'
# 方法
def climb(self):
print('我正在很努力的向前爬...')
def run(self):
print('我正在飞快的向前跑...')
def bite(self):
print('咬死你咬死你!!')
def eat(self):
print('有得吃,真满足...')
def sleep(self):
print('困了,睡了,晚安,zzz')
tt = Turtle()
print(tt)
# <__main__.Turtle object at 0x0000007C32D67F98>
print(type(tt))
# <class '__main__.Turtle'>
print(tt.__class__)
# <class '__main__.Turtle'>
print(tt.__class__.__name__)
# Turtle
tt.climb()
# 我正在很努力的向前爬...
tt.run()
# 我正在飞快的向前跑...
tt.bite()
# 咬死你咬死你!!
# Python类也是对象。它们是type的实例
print(type(Turtle))
# <class 'type'>
- 继承:子类自动共享父类之间数据和方法的机制
【例子】
class MyList(list):
pass
lst = MyList([1, 5, 2, 7, 8])
lst.append(9)
lst.sort()
print(lst)
# [1, 2, 5, 7, 8, 9]
- 多态:不同对象对同一方法响应不同的行动
【例子】
class Animal:
def run(self):
raise AttributeError('子类必须实现这个方法')
class People(Animal):
def run(self):
print('人正在走')
class Pig(Animal):
def run(self):
print('pig is walking')
class Dog(Animal):
def run(self):
print('dog is running')
def func(animal):
animal.run()
func(Pig())
# pig is walking
self 是什么?
Python 的 self
相当于 C++ 的 this
指针。
【例子】
class Test:
def prt(self):
print(self)
print(self.__class__)
t = Test()
t.prt()
# <__main__.Test object at 0x000000BC5A351208>
# <class '__main__.Test'>
类的方法与普通的函数只有一个特别的区别 —— 它们必须有一个额外的第一个参数名称(对应于该实例,即该对象本身),按照惯例它的名称是 self
。在调用方法时,我们无需明确提供与参数 self
相对应的参数。
【例子】
class Ball:
def setName(self, name):
self.name = name
def kick(self):
print("我叫%s,该死的,谁踢我..." % self.name)
a = Ball()
a.setName("球A")
b = Ball()
b.setName("球B")
c = Ball()
c.setName("球C")
a.kick()
# 我叫球A,该死的,谁踢我...
b.kick()
# 我叫球B,该死的,谁踢我...
Python 的魔法方法
据说,Python 的对象天生拥有一些神奇的方法,它们是面向对象的 Python 的一切…
它们是可以给你的类增加魔力的特殊方法…
如果你的对象实现了这些方法中的某一个,那么这个方法就会在特殊的情况下被 Python 所调用,而这一切都是自动发生的…
类有一个名为__init__(self[, param1, param2...])
的魔法方法,该方法在类实例化时会自动调用。
【例子】
class Ball:
def __init__(self, name):
self.name = name
def kick(self):
print("我叫%s,该死的,谁踢我..." % self.name)
a = Ball("球A")
b = Ball("球B")
c = Ball("球C")
a.kick()
# 我叫球A,该死的,谁踢我...
b.kick()
# 我叫球B,该死的,谁踢我...
initial这个初始化函数确实挺魔性的,调用函数会自动初始化参数方便了编程方式
公有和私有
在 Python 中定义私有变量只需要在变量名或函数名前加上“__”两个下划线,那么这个函数或变量就会为私有的了。
【例子】类的私有属性实例
class JustCounter:
__secretCount = 0 # 私有变量
publicCount = 0 # 公开变量
def count(self):
self.__secretCount += 1
self.publicCount += 1
print(self.__secretCount)
counter = JustCounter()
counter.count() # 1
counter.count() # 2
print(counter.publicCount) # 2
# Python的私有为伪私有
print(counter._JustCounter__secretCount) # 2
print(counter.__secretCount)
# AttributeError: 'JustCounter' object has no attribute '__secretCount'
【例子】类的私有方法实例
class Site:
def __init__(self, name, url):
self.name = name # public
self.__url = url # private
def who(self):
print('name : ', self.name)
print('url : ', self.__url)
def __foo(self): # 私有方法
print('这是私有方法')
def foo(self): # 公共方法
print('这是公共方法')
self.__foo()
x = Site('老马的程序人生', 'https://blog.csdn.net/LSGO_MYP')
x.who()
# name : 老马的程序人生
# url : https://blog.csdn.net/LSGO_MYP
x.foo()
# 这是公共方法
# 这是私有方法
x.__foo()
# AttributeError: 'Site' object has no attribute '__foo'
继承
。。。没看懂
# 类定义
class people:
# 定义基本属性
name = ''
age = 0
# 定义私有属性,私有属性在类外部无法直接进行访问
__weight = 0
# 定义构造方法
def __init__(self, n, a, w):
self.name = n
self.age = a
self.__weight = w
def speak(self):
print("%s 说: 我 %d 岁。" % (self.name, self.age))
# 单继承示例
class student(people):
grade = ''
def __init__(self, n, a, w, g):
# 调用父类的构函
people.__init__(self, n, a, w)
self.grade = g
# 覆写父类的方法
def speak(self):
print("%s 说: 我 %d 岁了,我在读 %d 年级" % (self.name, self.age, self.grade))
s = student('小马的程序人生', 10, 60, 3)
s.speak()
# 小马的程序人生 说: 我 10 岁了,我在读 3 年级
解决该问题可用以下两种方式:
- 调用未绑定的父类方法
Fish.__init__(self)
class Shark(Fish): # 鲨鱼
def __init__(self):
Fish.__init__(self)
self.hungry = True
def eat(self):
if self.hungry:
print("吃货的梦想就是天天有得吃!")
self.hungry = False
else:
print("太撑了,吃不下了!")
self.hungry = True
- 使用super函数
super().__init__()
class Shark(Fish): # 鲨鱼
def __init__(self):
super().__init__()
self.hungry = True
def eat(self):
if self.hungry:
print("吃货的梦想就是天天有得吃!")
self.hungry = False
else:
print("太撑了,吃不下了!")
self.hungry = True
# 类定义
class People:
# 定义基本属性
name = ''
age = 0
# 定义私有属性,私有属性在类外部无法直接进行访问
__weight = 0
# 定义构造方法
def __init__(self, n, a, w):
self.name = n
self.age = a
self.__weight = w
def speak(self):
print("%s 说: 我 %d 岁。" % (self.name, self.age))
# 单继承示例
class Student(People):
grade = ''
def __init__(self, n, a, w, g):
# 调用父类的构函
People.__init__(self, n, a, w)
self.grade = g
# 覆写父类的方法
def speak(self):
print("%s 说: 我 %d 岁了,我在读 %d 年级" % (self.name, self.age, self.grade))
# 另一个类,多重继承之前的准备
class Speaker:
topic = ''
name = ''
def __init__(self, n, t):
self.name = n
self.topic = t
def speak(self):
print("我叫 %s,我是一个演说家,我演讲的主题是 %s" % (self.name, self.topic))
# 多重继承
class Sample01(Speaker, Student):
a = ''
def __init__(self, n, a, w, g, t):
Student.__init__(self, n, a, w, g)
Speaker.__init__(self, n, t)
# 方法名同,默认调用的是在括号中排前地父类的方法
test = Sample01("Tim", 25, 80, 4, "Python")
test.speak()
# 我叫 Tim,我是一个演说家,我演讲的主题是 Python
class Sample02(Student, Speaker):
a = ''
def __init__(self, n, a, w, g, t):
Student.__init__(self, n, a, w, g)
Speaker.__init__(self, n, t)
# 方法名同,默认调用的是在括号中排前地父类的方法
test = Sample02("Tim", 25, 80, 4, "Python")
test.speak()
# Tim 说: 我 25 岁了,我在读 4 年级
组合
【例子】
class Turtle:
def __init__(self, x):
self.num = x
class Fish:
def __init__(self, x):
self.num = x
class Pool:
def __init__(self, x, y):
self.turtle = Turtle(x)
self.fish = Fish(y)
def print_num(self):
print("水池里面有乌龟%s只,小鱼%s条" % (self.turtle.num, self.fish.num))
p = Pool(2, 3)
p.print_num()
# 水池里面有乌龟2只,小鱼3条
类、类对象和实例对象
类对象:创建一个类,其实也是一个对象也在内存开辟了一块空间,称为类对象,类对象只有一个。
class A(object):
pass
实例对象:就是通过实例化类创建的对象,称为实例对象,实例对象可以有多个。
类属性:类里面方法外面定义的变量称为类属性。类属性所属于类对象并且多个实例对象之间共享同一个类属性,说白了就是类属性所有的通过该类实例化的对象都能共享。
【例子】
class A():
a = 0 #类属性
def __init__(self, xx):
A.a = xx #使用类属性可以通过 (类名.类属性)调用。
实例属性:实例属性和具体的某个实例对象有关系,并且一个实例对象和另外一个实例对象是不共享属性的,说白了实例属性只能在自己的对象里面使用,其他的对象不能直接使用,因为self
是谁调用,它的值就属于该对象。
【例子】
# 创建类对象
class Test(object):
class_attr = 100 # 类属性
def __init__(self):
self.sl_attr = 100 # 实例属性
def func(self):
print('类对象.类属性的值:', Test.class_attr) # 调用类属性
print('self.类属性的值', self.class_attr) # 相当于把类属性 变成实例属性
print('self.实例属性的值', self.sl_attr) # 调用实例属性
a = Test()
a.func()
# 类对象.类属性的值: 100
# self.类属性的值 100
# self.实例属性的值 100
b = Test()
b.func()
# 类对象.类属性的值: 100
# self.类属性的值 100
# self.实例属性的值 100
a.class_attr = 200
a.sl_attr = 200
a.func()
# 类对象.类属性的值: 100
# self.类属性的值 200
# self.实例属性的值 200
b.func()
# 类对象.类属性的值: 100
# self.类属性的值 100
# self.实例属性的值 100
Test.class_attr = 300
a.func()
# 类对象.类属性的值: 300
# self.类属性的值 200
# self.实例属性的值 200
b.func()
# 类对象.类属性的值: 300
# self.类属性的值 300
# self.实例属性的值 100
注意:属性与方法名相同,属性会覆盖方法。
【例子】
class A:
def x(self):
print('x_man')
aa = A()
aa.x() # x_man
aa.x = 1
print(aa.x) # 1
aa.x()
# TypeError: 'int' object is not callable
什么是绑定?
Python 严格要求方法需要有实例才能被调用,这种限制其实就是 Python 所谓的绑定概念。
Python 对象的数据属性通常存储在名为.__ dict__
的字典中,我们可以直接访问__dict__
,或利用 Python 的内置函数vars()
获取.__ dict__
。
【例子】
class CC:
def setXY(self, x, y):
self.x = x
self.y = y
def printXY(self):
print(self.x, self.y)
dd = CC()
print(dd.__dict__)
# {}
print(vars(dd))
# {}
print(CC.__dict__)
# {'__module__': '__main__', 'setXY': <function CC.setXY at 0x000000C3473DA048>, 'printXY': <function CC.printXY at 0x000000C3473C4F28>, '__dict__': <attribute '__dict__' of 'CC' objects>, '__weakref__': <attribute '__weakref__' of 'CC' objects>, '__doc__': None}
dd.setXY(4, 5)
print(dd.__dict__)
# {'x': 4, 'y': 5}
print(vars(CC))
# {'__module__': '__main__', 'setXY': <function CC.setXY at 0x000000632CA9B048>, 'printXY': <function CC.printXY at 0x000000632CA83048>, '__dict__': <attribute '__dict__' of 'CC' objects>, '__weakref__': <attribute '__weakref__' of 'CC' objects>, '__doc__': None}
print(CC.__dict__)
# {'__module__': '__main__', 'setXY': <function CC.setXY at 0x000000632CA9B048>, 'printXY': <function CC.printXY at 0x000000632CA83048>, '__dict__': <attribute '__dict__' of 'CC' objects>, '__weakref__': <attribute '__weakref__' of 'CC' objects>, '__doc__': None}
一些相关的内置函数(BIF)
-
issubclass(class, classinfo)
方法用于判断参数 class 是否是类型参数 classinfo 的子类。 -
一个类被认为是其自身的子类。
-
classinfo
可以是类对象的元组,只要class是其中任何一个候选类的子类,则返回True
。 -
isinstance(object, classinfo)
方法用于判断一个对象是否是一个已知的类型,类似type()
。 -
type()
不会认为子类是一种父类类型,不考虑继承关系。 -
isinstance()
会认为子类是一种父类类型,考虑继承关系。 -
如果第一个参数不是对象,则永远返回
False
。 -
如果第二个参数不是类或者由类对象组成的元组,会抛出一个
TypeError
异常。 -
hasattr(object, name)
用于判断对象是否包含对应的属性。 -
getattr(object, name[, default])
用于返回一个对象属性值。 -
setattr(object, name, value)
对应函数getattr()
,用于设置属性值,该属性不一定是存在的。 -
delattr(object, name)
用于删除属性。
class Coordinate:
x = 10
y = -5
z = 0
point1 = Coordinate()
print('x = ', point1.x) # x = 10
print('y = ', point1.y) # y = -5
print('z = ', point1.z) # z = 0
delattr(Coordinate, 'z')
print('--删除 z 属性后--') # --删除 z 属性后--
print('x = ', point1.x) # x = 10
print('y = ', point1.y) # y = -5
# 触发错误
print('z = ', point1.z)
# AttributeError: 'Coordinate' object has no attribute 'z'
-
class property([fget[, fset[, fdel[, doc]]]])
用于在新式类中返回属性值。-
fget
– 获取属性值的函数 -
fset
– 设置属性值的函数 -
fdel
– 删除属性值函数 -
doc
– 属性描述信息
-
【例子】
class C(object):
def __init__(self):
self.__x = None
def getx(self):
return self.__x
def setx(self, value):
self.__x = value
def delx(self):
del self.__x
x = property(getx, setx, delx, "I'm the 'x' property.")
cc = C()
cc.x = 2
print(cc.x) # 2
del cc.x
print(cc.x)
# AttributeError: 'C' object has no attribute '_C__x'
魔法方法
魔法方法总是被双下划线包围,例如__init__
。
魔法方法是面向对象的 Python 的一切,如果你不知道魔法方法,说明你还没能意识到面向对象的 Python 的强大。
魔法方法的“魔力”体现在它们总能够在适当的时候被自动调用。
魔法方法的第一个参数应为cls
(类方法) 或者self
(实例方法)。
-
cls
:代表一个类的名称 -
self
:代表一个实例对象的名称
基本的魔法方法
-
__init__(self[, ...])
构造器,当一个实例被创建的时候调用的初始化方法 -
__new__(cls[, ...])
在一个对象实例化的时候所调用的第一个方法,在调用__init__
初始化前,先调用__new__
。-
__new__
至少要有一个参数cls
,代表要实例化的类,此参数在实例化时由 Python 解释器自动提供,后面的参数直接传递给__init__
。 -
__new__
对当前类进行了实例化,并将实例返回,传给__init__
的self
。但是,执行了__new__
,并不一定会进入__init__
,只有__new__
返回了,当前类cls
的实例,当前类的__init__
才会进入。
-
-
若
__new__
没有正确返回当前类cls
的实例,那__init__
是不会被调用的,即使是父类的实例也不行,将没有__init__
被调用。
【例子】利用__new__
实现单例模式。
class Earth:
pass
a = Earth()
print(id(a)) # 260728291456
b = Earth()
print(id(b)) # 260728291624
class Earth:
__instance = None # 定义一个类属性做判断
def __new__(cls):
if cls.__instance is None:
cls.__instance = object.__new__(cls)
return cls.__instance
else:
return cls.__instance
a = Earth()
print(id(a)) # 512320401648
b = Earth()
print(id(b)) # 512320401648
-
__new__
方法主要是当你继承一些不可变的 class 时(比如int, str, tuple
), 提供给你一个自定义这些类的实例化过程的途径。
【例子】
class CapStr(str):
def __new__(cls, string):
string = string.upper()
return str.__new__(cls, string)
a = CapStr("i love lsgogroup")
print(a) # I LOVE LSGOGROUP
-
__del__(self)
析构器,当一个对象将要被系统回收之时调用的方法。
Python 采用自动引用计数(ARC)方式来回收对象所占用的空间,当程序中有一个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 1;当程序中有两个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 2,依此类推,如果一个对象的引用计数变成了 0,则说明程序中不再有变量引用该对象,表明程序不再需要该对象,因此 Python 就会回收该对象。
大部分时候,Python 的 ARC 都能准确、高效地回收系统中的每个对象。但如果系统中出现循环引用的情况,比如对象 a 持有一个实例变量引用对象 b,而对象 b 又持有一个实例变量引用对象 a,此时两个对象的引用计数都是 1,而实际上程序已经不再有变量引用它们,系统应该回收它们,此时 Python 的垃圾回收器就可能没那么快,要等专门的循环垃圾回收器(Cyclic Garbage Collector)来检测并回收这种引用循环。
【例子】
class C(object):
def __init__(self):
print('into C __init__')
def __del__(self):
print('into C __del__')
c1 = C()
# into C __init__
c2 = c1
c3 = c2
del c3
del c2
del c1
# into C __del__
-
__str__(self)
:- 当你打印一个对象的时候,触发
__str__
- 当你使用
%s
格式化的时候,触发__str__
-
str
强转数据类型的时候,触发__str__
- 当你打印一个对象的时候,触发
-
__repr__(self)
:-
repr
是str
的备胎 - 有
__str__
的时候执行__str__
,没有实现__str__
的时候,执行__repr__
-
repr(obj)
内置函数对应的结果是__repr__
的返回值 - 当你使用
%r
格式化的时候 触发__repr__
-
【例子】
class Cat:
“”“定义一个猫类”""
def __init__(self, new_name, new_age):
"""在创建完对象之后 会自动调用, 它完成对象的初始化的功能"""
self.name = new_name
self.age = new_age
def __str__(self):
"""返回一个对象的描述信息"""
return "名字是:%s , 年龄是:%d" % (self.name, self.age)
def __repr__(self):
"""返回一个对象的描述信息"""
return "Cat:(%s,%d)" % (self.name, self.age)
def eat(self):
print("%s在吃鱼...." % self.name)
def drink(self):
print("%s在喝可乐..." % self.name)
def introduce(self):
print("名字是:%s, 年龄是:%d" % (self.name, self.age))
创建了一个对象
tom = Cat(“汤姆”, 30)
print(tom) # 名字是:汤姆 , 年龄是:30
print(str(tom)) # 名字是:汤姆 , 年龄是:30
print(repr(tom)) # Cat:(汤姆,30)
tom.eat() # 汤姆在吃鱼…
tom.introduce() # 名字是:汤姆, 年龄是:30
__str__(self)
的返回结果可读性强。也就是说,__str__
的意义是得到便于人们阅读的信息,就像下面的 ‘2019-10-11’ 一样。
__repr__(self)
的返回结果应更准确。怎么说,__repr__
存在的目的在于调试,便于开发者使用。
【例子】
上一篇: 能够在github网站上删除某个文件吗?
下一篇: (Java)类与对象