欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

[一起学Hive]之六-Hive的动态分区 博客分类: hive hivehive动态分区 

程序员文章站 2024-03-15 13:18:11
...

       前面文章介绍了Hive中是支持分区的。

       关系型数据库(如Oracle)中,对分区表Insert数据时候,数据库自动会根据分区字段的值,将数据插入到相应的分区中,Hive中也提供了类似的机制,即动态分区(Dynamic Partition),只不过,使用Hive的动态分区,需要进行相应的配置。

       先看一个应用场景,源表t_lxw1234的数据如下:

SELECT day,url FROM t_lxw1234;
2015-05-10 url1
2015-05-10 url2
2015-06-14 url1
2015-06-14 url2
2015-06-15 url1
2015-06-15 url2
……

      目标表为:

   

CREATE TABLE t_lxw1234_partitioned (
url STRING
) PARTITIONED BY (month STRING,day STRING)
stored AS textfile;

 

     

需求:将t_lxw1234中的数据按照时间(day),插入到目标表t_lxw1234_partitioned的相应分区中。

如果按照之前介绍的往指定一个分区中Insert数据,那么这个需求很不容易实现。

这时候就需要使用动态分区来实现,使用动态分区需要注意设定以下参数:

  • hive.exec.dynamic.partition

默认值:false

是否开启动态分区功能,默认false关闭。

使用动态分区时候,该参数必须设置成true;

  • hive.exec.dynamic.partition.mode

默认值:strict

动态分区的模式,默认strict,表示必须指定至少一个分区为静态分区,nonstrict模式表示允许所有的分区字段都可以使用动态分区。

一般需要设置为nonstrict

  • hive.exec.max.dynamic.partitions.pernode

默认值:100

在每个执行MR的节点上,最大可以创建多少个动态分区。

该参数需要根据实际的数据来设定。

比如:源数据中包含了一年的数据,即day字段有365个值,那么该参数就需要设置成大于365,如果使用默认值100,则会报错。

  • hive.exec.max.dynamic.partitions

默认值:1000

在所有执行MR的节点上,最大一共可以创建多少个动态分区。

同上参数解释。

  • hive.exec.max.created.files

默认值:100000

整个MR Job中,最大可以创建多少个HDFS文件。

一般默认值足够了,除非你的数据量非常大,需要创建的文件数大于100000,可根据实际情况加以调整。

  • hive.error.on.empty.partition

默认值:false

当有空分区生成时,是否抛出异常。

一般不需要设置。

 

      那么,上面的需求可以使用如下的语句来完成:

SET hive.exec.dynamic.partition=true;
SET hive.exec.dynamic.partition.mode=nonstrict;
SET hive.exec.max.dynamic.partitions.pernode = 1000;
SET hive.exec.max.dynamic.partitions=1000;
 
INSERT overwrite TABLE t_lxw1234_partitioned PARTITION (month,day)
SELECT url,substr(day,1,7) AS month,day
FROM t_lxw1234;

 

    

注意:在PARTITION (month,day)中指定分区字段名即可;

在SELECT子句的最后两个字段,必须对应前面PARTITION (month,day)中指定的分区字段,包括顺序。

执行结果如下:

Loading data to table liuxiaowen.t_lxw1234_partitioned partition (month=null, day=null)

Loading partition {month=2015-05, day=2015-05-10}

Loading partition {month=2015-06, day=2015-06-14}

Loading partition {month=2015-06, day=2015-06-15}

Partition liuxiaowen.t_lxw1234_partitioned{month=2015-05, day=2015-05-10} stats: [numFiles=1, numRows=2, totalSize=10, rawDataSize=8]

Partition liuxiaowen.t_lxw1234_partitioned{month=2015-06, day=2015-06-14} stats: [numFiles=1, numRows=2, totalSize=10, rawDataSize=8]

Partition liuxiaowen.t_lxw1234_partitioned{month=2015-06, day=2015-06-15} stats: [numFiles=1, numRows=2, totalSize=10, rawDataSize=8]

 

使用show partitions t_lxw1234_partitioned;查看目标表有哪些分区:

hive> show partitions t_lxw1234_partitioned;

OK

month=2015-05/day=2015-05-10

month=2015-06/day=2015-06-14

month=2015-06/day=2015-06-15

 

Hive相关文章(持续更新)

一起学Hive系列

—-Hive概述,Hive是什么

—-Hive函数大全-完整版

—-Hive中的数据库(Database)和表(Table)

—-Hive的安装配置

—-Hive的视图和分区

Hive分析函数系列

Hive索引

hive优化之——控制hive任务中的map数和reduce数