欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ResNet tensorflow实战(CIFAR10数据集)

程序员文章站 2024-03-15 10:39:11
...

 

ResNet tensorflow实战(CIFAR10数据集)

import tensorflow as tf
import os
import pickle
import numpy as np


def load_data(filename):
    """read data from data file."""
    with open(filename, 'rb') as f:
        data = pickle.load(f, encoding='bytes')
        return data[b'data'], data[b'labels']


# tensorflow.Dataset.
class CifarData:
    def __init__(self, filenames, need_shuffle):
        all_data = []
        all_labels = []
        for filename in filenames:
            data, labels = load_data(filename)
            all_data.append(data)
            all_labels.append(labels)
        self._data = np.vstack(all_data)
        self._data = self._data / 127.5 - 1
        self._labels = np.hstack(all_labels)
        print(self._data.shape)
        print(self._labels.shape)

        self._num_examples = self._data.shape[0]
        self._need_shuffle = need_shuffle
        self._indicator = 0
        if self._need_shuffle:
            self._shuffle_data()

    def _shuffle_data(self):
        # [0,1,2,3,4,5] -> [5,3,2,4,0,1]
        p = np.random.permutation(self._num_examples)
        self._data = self._data[p]
        self._labels = self._labels[p]

    def next_batch(self, batch_size):
        """return batch_size examples as a batch."""
        end_indicator = self._indicator + batch_size
        if end_indicator > self._num_examples:
            if self._need_shuffle:
                self._shuffle_data()
                self._indicator = 0
                end_indicator = batch_size
            else:
                raise Exception("have no more examples")
        if end_indicator > self._num_examples:
            raise Exception("batch size is larger than all examples")
        batch_data = self._data[self._indicator: end_indicator]
        batch_labels = self._labels[self._indicator: end_indicator]
        self._indicator = end_indicator
        return batch_data, batch_labels


CIFAR_DIR = "dataset/cifar-10-batches-py"
print(os.listdir(CIFAR_DIR))

train_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]
test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]

train_data = CifarData(train_filenames, True)
test_data = CifarData(test_filenames, False)


def residual_block(x, output_channel):
    """residual connection implementation"""
    input_channel = x.get_shape().as_list()[-1]
    if input_channel * 2 == output_channel:
        increase_dim = True
        strides = (2, 2)
    elif input_channel == output_channel:
        increase_dim = False
        strides = (1, 1)
    else:
        raise Exception("input channel can't match output channel")
    conv1 = tf.layers.conv2d(x,
                             output_channel,
                             (3,3),
                             strides = strides,
                             padding = 'same',
                             activation = tf.nn.relu,
                             name = 'conv1')
    conv2 = tf.layers.conv2d(conv1,
                             output_channel,
                             (3, 3),
                             strides = (1, 1),
                             padding = 'same',
                             activation = tf.nn.relu,
                             name = 'conv2')
    if increase_dim:
        # [None, image_width, image_height, channel] -> [,,,channel*2]
        pooled_x = tf.layers.average_pooling2d(x,
                                               (2, 2),
                                               (2, 2),
                                               padding = 'valid')
        padded_x = tf.pad(pooled_x,
                          [[0,0],
                           [0,0],
                           [0,0],
                           [input_channel // 2, input_channel // 2]])
    else:
        padded_x = x
    output_x = conv2 + padded_x
    return output_x

def res_net(x,
            num_residual_blocks,
            num_filter_base,
            class_num):
    """residual network implementation"""
    """
    Args:
    - x:
    - num_residual_blocks: eg: [3, 4, 6, 3]
    - num_filter_base:
    - class_num:
    """
    num_subsampling = len(num_residual_blocks)
    layers = []
    # x: [None, width, height, channel] -> [width, height, channel]
    input_size = x.get_shape().as_list()[1:]
    with tf.variable_scope('conv0'):
        conv0 = tf.layers.conv2d(x,
                                 num_filter_base,
                                 (3, 3),
                                 strides = (1, 1),
                                 padding = 'same',
                                 activation = tf.nn.relu,
                                 name = 'conv0')
        layers.append(conv0)
    # eg:num_subsampling = 4, sample_id = [0,1,2,3]
    for sample_id in range(num_subsampling):
        for i in range(num_residual_blocks[sample_id]):
            with tf.variable_scope("conv%d_%d" % (sample_id, i)):
                conv = residual_block(
                    layers[-1],
                    num_filter_base * (2 ** sample_id))
                layers.append(conv)
    multiplier = 2 ** (num_subsampling - 1)
    assert layers[-1].get_shape().as_list()[1:] \
        == [input_size[0] / multiplier,
            input_size[1] / multiplier,
            num_filter_base * multiplier]
    with tf.variable_scope('fc'):
        # layer[-1].shape : [None, width, height, channel]
        # kernal_size: image_width, image_height
        global_pool = tf.reduce_mean(layers[-1], [1,2])
        logits = tf.layers.dense(global_pool, class_num)
        layers.append(logits)
    return layers[-1]

x = tf.placeholder(tf.float32, [None, 3072])
y = tf.placeholder(tf.int64, [None])
# [None], eg: [0,5,6,3]
x_image = tf.reshape(x, [-1, 3, 32, 32])
# 32*32
x_image = tf.transpose(x_image, perm=[0, 2, 3, 1])

y_ = res_net(x_image, [2,3,2], 32, 10)

loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)
# y_ -> sofmax
# y -> one_hot
# loss = ylogy_

# indices
predict = tf.argmax(y_, 1)
# [1,0,1,1,1,0,0,0]
correct_prediction = tf.equal(predict, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))

with tf.name_scope('train_op'):
    train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)

init = tf.global_variables_initializer()
batch_size = 20
train_steps = 10000
test_steps = 100

# train 10k: 74.85%
with tf.Session() as sess:
    sess.run(init)
    for i in range(train_steps):
        batch_data, batch_labels = train_data.next_batch(batch_size)
        loss_val, acc_val, _ = sess.run(
            [loss, accuracy, train_op],
            feed_dict={
                x: batch_data,
                y: batch_labels})
        if (i + 1) % 100 == 0:
            print('[Train] Step: %d, loss: %4.5f, acc: %4.5f'
                  % (i + 1, loss_val, acc_val))
        if (i + 1) % 1000 == 0:
            test_data = CifarData(test_filenames, False)
            all_test_acc_val = []
            for j in range(test_steps):
                test_batch_data, test_batch_labels \
                    = test_data.next_batch(batch_size)
                test_acc_val = sess.run(
                    [accuracy],
                    feed_dict={
                        x: test_batch_data,
                        y: test_batch_labels
                    })
                all_test_acc_val.append(test_acc_val)
            test_acc = np.mean(all_test_acc_val)
            print('[Test ] Step: %d, acc: %4.5f' % (i + 1, test_acc))

 

 

 

 

ResNet tensorflow实战(CIFAR10数据集)

ResNet tensorflow实战(CIFAR10数据集)

 

相关标签: ResNet tensorflow