欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

SSD 源码分析

程序员文章站 2024-03-15 08:17:41
...

http://blog.csdn.net/mydear_11000/article/details/73867041


SSD(SSD: Single Shot MultiBox Detector)是采用单个深度神经网络模型实现目标检测和识别的方法。如图0-1所示,该方法是综合了Faster R-CNN的anchor box和YOLO单个神经网络检测思路(YOLOv2也采用了类似的思路,详见YOLO升级版:YOLOv2和YOLO9000解析),既有Faster R-CNN的准确率又有YOLO的检测速度,可以实现高准确率实时检测。在300*300分辨率,SSD在VOC2007数据集上准确率为74.3%mAP,59FPS;512*512分辨率,SSD获得了超过Fast R-CNN,获得了80%mAP/19fps的结果,如图0-2所示。SSD关键点分为两类:模型结构和训练方法。模型结构包括:多尺度特征图检测网络结构和anchor boxes生成;训练方法包括:ground truth预处理和损失函数。本文解析的是SSD的tensorflow实现源码,来源balancap/SSD-Tensorflow。本文结构如下:

1,多尺度特征图检测网络结构;

2,anchor boxes生成;

3,ground truth预处理;

4,目标函数;

5,总结

SSD 源码分析

图0-1 SSD与MultiBox,Faster R-CNN,YOLO原理(此图来源于作者在eccv2016的PPT)

SSD 源码分析

图0-2 SSD检测速度与精确度。(此图来源于作者在eccv2016的PPT)

1 多尺度特征图检测网络结构

SSD的网络模型如图1-1所示。SSD 源码分析

图1-1 SSD模型结构。(此图来源于原论文)

模型建立源代码包含于ssd_vgg_300.py中。模型多尺度特征图检测如图1-2所示。模型选择的特征图包括:38×38(block4),19×19(block7),10×10(block8),5×5(block9),3×3(block10),1×1(block11)。对于每张特征图,生成采用3×3卷积生成 默认框的四个偏移位置和21个类别的置信度。比如block7,默认框(def boxes)数目为6,每个默认框包含4个偏移位置和21个类别置信度(4+21)。因此,block7的最后输出为(19*19)*6*(4+21)。

SSD 源码分析

图1-2 多尺度特征采样(此图来源:知乎专栏

其中,初始化参数如下:

    """
    Implementation of the SSD VGG-based 300 network.

    The default features layers with 300x300 image input are:
      conv4 ==> 38 x 38
      conv7 ==> 19 x 19
      conv8 ==> 10 x 10
      conv9 ==> 5 x 5
      conv10 ==> 3 x 3
      conv11 ==> 1 x 1
    The default image size used to train this network is 300x300.
    """
    default_params = SSDParams(
        img_shape=(300, 300),#输入尺寸
        num_classes=21,#预测类别20+1=21(20类加背景)
        #获取feature map层
        feat_layers=['block4', 'block7', 'block8', 'block9', 'block10', 'block11'],
        feat_shapes=[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)],
        # 每个特性层上的anchor大小都不一样, 越靠近输入的层其anchor越小。 
# 确定第一个与最后一个feature层的anchor大小以后, 处于中间的层的anchor大小则通过线性插值计算而来。例如,假如anchor_size_bounds = [0.2, 0.7], 有6个feature layer,则每个layer对应的default anchor大小为:[0.2, 0.3, 0.4, 0.5, 0.6, 0.7]. anchor_size_bounds=[0.15, 0.90], #anchor boxes的大小 anchor_sizes=[(21., 45.), (45., 99.), (99., 153.), (153., 207.), (207., 261.), (261., 315.)], #anchor boxes的aspect ratios anchor_ratios=[[2, .5], [2, .5, 3, 1./3], [2, .5, 3, 1./3], [2, .5, 3, 1./3], [2, .5], [2, .5]], anchor_steps=[8, 16, 32, 64, 100, 300],#anchor的层 anchor_offset=0.5,#补偿阀值0.5 normalizations=[20, -1, -1, -1, -1, -1],#该特征层是否正则,大于零即正则;小于零则否 prior_scaling=[0.1, 0.1, 0.2, 0.2] )

建立模型代码如下,作者采用了TensorFlow-Slim(类似于keras的高层库)来建立网络模型,详细内容可以参考TensorFlow-Slim网页。

#建立ssd网络函数
def ssd_net(inputs,
            num_classes=21,
            feat_layers=SSDNet.default_params.feat_layers,
            anchor_sizes=SSDNet.default_params.anchor_sizes,
            anchor_ratios=SSDNet.default_params.anchor_ratios,
            normalizations=SSDNet.default_params.normalizations,
            is_training=True,
            dropout_keep_prob=0.5,
            prediction_fn=slim.softmax,
            reuse=None,
            scope='ssd_300_vgg'):
    """SSD net definition.
    """
    # End_points collect relevant activations for external use.
    #用于收集每一层输出结果
    end_points = {}
    #采用slim建立vgg网络,网络结构参考文章内的结构图
    with tf.variable_scope(scope, 'ssd_300_vgg', [inputs], reuse=reuse):
        # Original VGG-16 blocks.
        net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
        end_points['block1'] = net
        net = slim.max_pool2d(net, [2, 2], scope='pool1')
        # Block 2.
        net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
        end_points['block2'] = net
        net = slim.max_pool2d(net, [2, 2], scope='pool2')
        # Block 3.
        net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
        end_points['block3'] = net
        net = slim.max_pool2d(net, [2, 2], scope='pool3')
        # Block 4.
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
        end_points['block4'] = net
        net = slim.max_pool2d(net, [2, 2], scope='pool4')
        # Block 5.
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
        end_points['block5'] = net
        net = slim.max_pool2d(net, [3, 3], 1, scope='pool5')#max pool

        #外加的SSD层
        # Additional SSD blocks.
        # Block 6: let's dilate the hell out of it!
        #输出shape为19×19×1024
        net = slim.conv2d(net, 1024, [3, 3], rate=6, scope='conv6')
        end_points['block6'] = net
        # Block 7: 1x1 conv. Because the fuck.
        #卷积核为1×1
        net = slim.conv2d(net, 1024, [1, 1], scope='conv7')
        end_points['block7'] = net

        # Block 8/9/10/11: 1x1 and 3x3 convolutions stride 2 (except lasts).
        end_point = 'block8'
        with tf.variable_scope(end_point):
            net = slim.conv2d(net, 256, [1, 1], scope='conv1x1')
            net = slim.conv2d(net, 512, [3, 3], stride=2, scope='conv3x3')
        end_points[end_point] = net
        end_point = 'block9'
        with tf.variable_scope(end_point):
            net = slim.conv2d(net, 128, [1, 1], scope='conv1x1')
            net = slim.conv2d(net, 256, [3, 3], stride=2, scope='conv3x3')
        end_points[end_point] = net
        end_point = 'block10'
        with tf.variable_scope(end_point):
            net = slim.conv2d(net, 128, [1, 1], scope='conv1x1')
            net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID')
        end_points[end_point] = net
        end_point = 'block11'
        with tf.variable_scope(end_point):
            net = slim.conv2d(net, 128, [1, 1], scope='conv1x1')
            net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID')
        end_points[end_point] = net

        # Prediction and localisations layers.
        #预测和定位
        predictions = []
        logits = []
        localisations = []
        for i, layer in enumerate(feat_layers):
            with tf.variable_scope(layer + '_box'):
                #接受特征层的输出,生成类别和位置预测
                p, l = ssd_multibox_layer(end_points[layer],
                                          num_classes,
                                          anchor_sizes[i],
                                          anchor_ratios[i],
                                          normalizations[i])
            #把每一层的预测收集
            predictions.append(prediction_fn(p))#prediction_fn为softmax,预测类别
            logits.append(p)#概率
            localisations.append(l)#预测位置信息

        return predictions, localisations, logits, end_points

2 anchor box生成

对每一张特征图,按照不同的大小(scale) 和长宽比(ratio) 生成生成k个默认框(default boxes),原理图如图2-1所示(此图中,默认框数目k=6,其中5×5的红色点代表特征图,因此:5*5*6 = 150 个boxes)。

每个默认框大小计算公式为:SSD 源码分析,其中,m为特征图数目,SSD 源码分析为最底层特征图大小(原论文中值为0.2,代码中为0.15),SSD 源码分析为最顶层特征图默认框大小(原论文中为0.9,代码中为0.9)。

每个默认框长宽比根据比例值计算,原论文中比例值为SSD 源码分析,因此,每个默认框的宽为SSD 源码分析,高为SSD 源码分析。对于比例为1的默认框,额外添加一个比例为SSD 源码分析的默认框。最终,每张特征图中的每个点生成6个默认框。每个默认框中心设定为SSD 源码分析,其中,SSD 源码分析为第k个特征图尺寸。

SSD 源码分析SSD 源码分析SSD 源码分析

图2-1 anchor box生成示意图(此图来源于知乎专栏

源代码中,默认框生成函数为ssd_anchor_one_layer(),代码如下:

#生成一层的anchor boxes
def ssd_anchor_one_layer(img_shape,#原始图像shape
                         feat_shape,#特征图shape
                         sizes,#预设的box size
                         ratios,#aspect 比例
                         step,#anchor的层
                         offset=0.5,
                         dtype=np.float32):
    """Computer SSD default anchor boxes for one feature layer.

    Determine the relative position grid of the centers, and the relative
    width and height.

    Arguments:
      feat_shape: Feature shape, used for computing relative position grids;
      size: Absolute reference sizes;
      ratios: Ratios to use on these features;
      img_shape: Image shape, used for computing height, width relatively to the
        former;
      offset: Grid offset.

    Return:
      y, x, h, w: Relative x and y grids, and height and width.
    """
    # Compute the position grid: simple way.
    # y, x = np.mgrid[0:feat_shape[0], 0:feat_shape[1]]
    # y = (y.astype(dtype) + offset) / feat_shape[0]
    # x = (x.astype(dtype) + offset) / feat_shape[1]
    # Weird SSD-Caffe computation using steps values...
    
    """
    #测试中,参数如下
    feat_shapes=[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)]
    anchor_sizes=[(21., 45.),
                      (45., 99.),
                      (99., 153.),
                      (153., 207.),
                      (207., 261.),
                      (261., 315.)]
    anchor_ratios=[[2, .5],
                       [2, .5, 3, 1./3],
                       [2, .5, 3, 1./3],
                       [2, .5, 3, 1./3],
                       [2, .5],
                       [2, .5]]
    anchor_steps=[8, 16, 32, 64, 100, 300]


    offset=0.5

    dtype=np.float32

    feat_shape=feat_shapes[0]
    step=anchor_steps[0]
    """
    #测试中,y和x的shape为(38,38)(38,38)
    #y的值为
    #array([[ 0,  0,  0, ...,  0,  0,  0],
     #  [ 1,  1,  1, ...,  1,  1,  1],
    # [ 2,  2,  2, ...,  2,  2,  2],
    #   ..., 
     #  [35, 35, 35, ..., 35, 35, 35],
    #  [36, 36, 36, ..., 36, 36, 36],
     #  [37, 37, 37, ..., 37, 37, 37]])
    y, x = np.mgrid[0:feat_shape[0], 0:feat_shape[1]]
    #测试中y=(y+0.5)×8/300,x=(x+0.5)×8/300
    y = (y.astype(dtype) + offset) * step / img_shape[0]
    x = (x.astype(dtype) + offset) * step / img_shape[1]

    #扩展维度,维度为(38,38,1)
    # Expand dims to support easy broadcasting.
    y = np.expand_dims(y, axis=-1)
    x = np.expand_dims(x, axis=-1)

    # Compute relative height and width.
    # Tries to follow the original implementation of SSD for the order.
    #数值为2+2
    num_anchors = len(sizes) + len(ratios)
    #shape为(4,)
    h = np.zeros((num_anchors, ), dtype=dtype)
    w = np.zeros((num_anchors, ), dtype=dtype)
    # Add first anchor boxes with ratio=1.
    #测试中,h[0]=21/300,w[0]=21/300?
    h[0] = sizes[0] / img_shape[0]
    w[0] = sizes[0] / img_shape[1]
    di = 1
    if len(sizes) > 1:
        #h[1]=sqrt(21*45)/300
        h[1] = math.sqrt(sizes[0] * sizes[1]) / img_shape[0]
        w[1] = math.sqrt(sizes[0] * sizes[1]) / img_shape[1]
        di += 1
    for i, r in enumerate(ratios):
        h[i+di] = sizes[0] / img_shape[0] / math.sqrt(r)
        w[i+di] = sizes[0] / img_shape[1] * math.sqrt(r)
    #测试中,y和x shape为(38,38,1)
    #h和w的shape为(4,)
    return y, x, h, w

3 ground truth预处理

训练过程中,首先需要将label信息(ground truth box,ground truth category)进行预处理,将其对应到相应的默认框上。根据默认框和ground truth box的jaccard 重叠来寻找对应的默认框。文章中选取了jaccard重叠超过0.5的默认框为正样本,其它为负样本。

源代码ground truth预处理代码位于ssd_common.py文件中,关键代码如下:

#label和bbox编码函数
def tf_ssd_bboxes_encode_layer(labels,#ground truth标签,1D tensor
                               bboxes,#N×4 Tensor(float)
                               anchors_layer,#anchors,为list
                               matching_threshold=0.5,#阀值
                               prior_scaling=[0.1, 0.1, 0.2, 0.2],#缩放
                               dtype=tf.float32):
    """Encode groundtruth labels and bounding boxes using SSD anchors from
    one layer.

    Arguments:
      labels: 1D Tensor(int64) containing groundtruth labels;
      bboxes: Nx4 Tensor(float) with bboxes relative coordinates;
      anchors_layer: Numpy array with layer anchors;
      matching_threshold: Threshold for positive match with groundtruth bboxes;
      prior_scaling: Scaling of encoded coordinates.

    Return:
      (target_labels, target_localizations, target_scores): Target Tensors.
    """
    # Anchors coordinates and volume.
    #获取anchors层
    yref, xref, href, wref = anchors_layer
    ymin = yref - href / 2.
    xmin = xref - wref / 2.
    ymax = yref + href / 2.
    xmax = xref + wref / 2.
    #xmax的shape为((38, 38, 1), (38, 38, 1), (4,), (4,))
(38, 38, 4)
    #体积
    vol_anchors = (xmax - xmin) * (ymax - ymin)

    # Initialize tensors...
    shape = (yref.shape[0], yref.shape[1], href.size)
    feat_labels = tf.zeros(shape, dtype=tf.int64)
    feat_scores = tf.zeros(shape, dtype=dtype)
    #shape为(38,38,4)
    feat_ymin = tf.zeros(shape, dtype=dtype)
    feat_xmin = tf.zeros(shape, dtype=dtype)
    feat_ymax = tf.ones(shape, dtype=dtype)
    feat_xmax = tf.ones(shape, dtype=dtype)

    #计算jaccard重合
    def jaccard_with_anchors(bbox):
        """Compute jaccard score a box and the anchors.
        """
        # Intersection bbox and volume.
        int_ymin = tf.maximum(ymin, bbox[0])
        int_xmin = tf.maximum(xmin, bbox[1])
        int_ymax = tf.minimum(ymax, bbox[2])
        int_xmax = tf.minimum(xmax, bbox[3])
        h = tf.maximum(int_ymax - int_ymin, 0.)
        w = tf.maximum(int_xmax - int_xmin, 0.)

        # Volumes.
        inter_vol = h * w
        union_vol = vol_anchors - inter_vol \
            + (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
        jaccard = tf.div(inter_vol, union_vol)
        return jaccard
    #条件函数 
    def condition(i, feat_labels, feat_scores,
                  feat_ymin, feat_xmin, feat_ymax, feat_xmax):
        """Condition: check label index.
        """
        #tf.less函数 Returns the truth value of (x < y) element-wise.
        r = tf.less(i, tf.shape(labels))
        return r[0]
    #主体
    def body(i, feat_labels, feat_scores,
             feat_ymin, feat_xmin, feat_ymax, feat_xmax):
        """Body: update feature labels, scores and bboxes.
        Follow the original SSD paper for that purpose:
          - assign values when jaccard > 0.5;
          - only update if beat the score of other bboxes.
        """
        # Jaccard score.
        label = labels[i]
        bbox = bboxes[i]
        scores = jaccard_with_anchors(bbox)#计算jaccard重合值

        # 'Boolean' mask.
        #tf.greater函数返回大于的布尔值
        mask = tf.logical_and(tf.greater(scores, matching_threshold),
                              tf.greater(scores, feat_scores))
        imask = tf.cast(mask, tf.int64)
        fmask = tf.cast(mask, dtype)
        # Update values using mask.
        feat_labels = imask * label + (1 - imask) * feat_labels
        feat_scores = tf.select(mask, scores, feat_scores)

        feat_ymin = fmask * bbox[0] + (1 - fmask) * feat_ymin
        feat_xmin = fmask * bbox[1] + (1 - fmask) * feat_xmin
        feat_ymax = fmask * bbox[2] + (1 - fmask) * feat_ymax
        feat_xmax = fmask * bbox[3] + (1 - fmask) * feat_xmax
        return [i+1, feat_labels, feat_scores,
                feat_ymin, feat_xmin, feat_ymax, feat_xmax]
    # Main loop definition.
    i = 0
    [i, feat_labels, feat_scores,
     feat_ymin, feat_xmin,
     feat_ymax, feat_xmax] = tf.while_loop(condition, body,
                                           [i, feat_labels, feat_scores,
                                            feat_ymin, feat_xmin,
                                            feat_ymax, feat_xmax])
   
    # Transform to center / size.
    #计算补偿后的中心
    feat_cy = (feat_ymax + feat_ymin) / 2.
    feat_cx = (feat_xmax + feat_xmin) / 2.
    feat_h = feat_ymax - feat_ymin
    feat_w = feat_xmax - feat_xmin
    # Encode features.
    feat_cy = (feat_cy - yref) / href / prior_scaling[0]
    feat_cx = (feat_cx - xref) / wref / prior_scaling[1]
    feat_h = tf.log(feat_h / href) / prior_scaling[2]
    feat_w = tf.log(feat_w / wref) / prior_scaling[3]
    # Use SSD ordering: x / y / w / h instead of ours.
    feat_localizations = tf.stack([feat_cx, feat_cy, feat_w, feat_h], axis=-1)
    return feat_labels, feat_localizations, feat_scores


#ground truth编码函数
def tf_ssd_bboxes_encode(labels,#ground truth标签,1D tensor
                         bboxes,#N×4 Tensor(float)
                         anchors,#anchors,为list
                         matching_threshold=0.5,#阀值
                         prior_scaling=[0.1, 0.1, 0.2, 0.2],#缩放
                         dtype=tf.float32,
                         scope='ssd_bboxes_encode'):
    """Encode groundtruth labels and bounding boxes using SSD net anchors.
    Encoding boxes for all feature layers.

    Arguments:
      labels: 1D Tensor(int64) containing groundtruth labels;
      bboxes: Nx4 Tensor(float) with bboxes relative coordinates;
      anchors: List of Numpy array with layer anchors;
      matching_threshold: Threshold for positive match with groundtruth bboxes;
      prior_scaling: Scaling of encoded coordinates.

    Return:
      (target_labels, target_localizations, target_scores):
        Each element is a list of target Tensors.
    """
    with tf.name_scope(scope):
        target_labels = []
        target_localizations = []
        target_scores = []
        for i, anchors_layer in enumerate(anchors):
            with tf.name_scope('bboxes_encode_block_%i' % i):
                #将label和bbox进行编码
                t_labels, t_loc, t_scores = \
                    tf_ssd_bboxes_encode_layer(labels, bboxes, anchors_layer,
                                               matching_threshold, prior_scaling, dtype)
                target_labels.append(t_labels)
                target_localizations.append(t_loc)
                target_scores.append(t_scores)
        return target_labels, target_localizations, target_scores


#编码goundtruth的label和bbox
    def bboxes_encode(self, labels, bboxes, anchors,
                      scope='ssd_bboxes_encode'):
        """Encode labels and bounding boxes.
        """
        return ssd_common.tf_ssd_bboxes_encode(
            labels, bboxes, anchors,
            matching_threshold=0.5,
            prior_scaling=self.params.prior_scaling,
            scope=scope)

4 目标函数

SSD目标函数分为两个部分:对应默认框的位置loss(loc)和类别置信度loss(conf)。定义SSD 源码分析 为第i个默认框和对应的第j个ground truth box,相应的类别为p。目标函数定义为:

SSD 源码分析

其中,N为匹配的默认框。如果N=0,loss为零。SSD 源码分析为预测框SSD 源码分析和ground truth box SSD 源码分析的Smooth L1 loss,SSD 源码分析值通过cross validation设置为1。

SSD 源码分析SSD 源码分析定义如下:SSD 源码分析其中,SSD 源码分析为预测框,SSD 源码分析为ground truth。SSD 源码分析为补偿(regress to offsets)后的默认框(SSD 源码分析)的中心,SSD 源码分析为默认框的宽和高。

SSD 源码分析定义为多累别softmax loss,公式如下:

SSD 源码分析目标函数定义源码位于ssd_vgg_300.py,注释如下:

# =========================================================================== #
# SSD loss function.
# =========================================================================== #
def ssd_losses(logits, #预测类别
               localisations,#预测位置
               gclasses, #ground truth 类别
               glocalisations, #ground truth 位置
               gscores,#ground truth 分数
               match_threshold=0.5,
               negative_ratio=3.,
               alpha=1.,
               label_smoothing=0.,
               scope='ssd_losses'):
    """Loss functions for training the SSD 300 VGG network.

    This function defines the different loss components of the SSD, and
    adds them to the TF loss collection.

    Arguments:
      logits: (list of) predictions logits Tensors;
      localisations: (list of) localisations Tensors;
      gclasses: (list of) groundtruth labels Tensors;
      glocalisations: (list of) groundtruth localisations Tensors;
      gscores: (list of) groundtruth score Tensors;
    """
    # Some debugging...
    # for i in range(len(gclasses)):
    #     print(localisations[i].get_shape())
    #     print(logits[i].get_shape())
    #     print(gclasses[i].get_shape())
    #     print(glocalisations[i].get_shape())
    #     print()
    with tf.name_scope(scope):
        l_cross = []
        l_loc = []
        for i in range(len(logits)):
            with tf.name_scope('block_%i' % i):
                # Determine weights Tensor.
                pmask = tf.cast(gclasses[i] > 0, logits[i].dtype)
                n_positives = tf.reduce_sum(pmask)#正样本数目
                
                #np.prod函数Return the product of array elements over a given axis
                n_entries = np.prod(gclasses[i].get_shape().as_list())
                # r_positive = n_positives / n_entries
                # Select some random negative entries.
                r_negative = negative_ratio * n_positives / (n_entries - n_positives)#负样本数
                nmask = tf.random_uniform(gclasses[i].get_shape(),
                                          dtype=logits[i].dtype)
                nmask = nmask * (1. - pmask)
                nmask = tf.cast(nmask > 1. - r_negative, logits[i].dtype)

                #cross_entropy loss
                # Add cross-entropy loss.
                with tf.name_scope('cross_entropy'):
                    # Weights Tensor: positive mask + random negative.
                    weights = pmask + nmask
                    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits[i],
                                                                          gclasses[i])
                    loss = tf.contrib.losses.compute_weighted_loss(loss, weights)
                    l_cross.append(loss)

                #smooth loss
                # Add localization loss: smooth L1, L2, ...
                with tf.name_scope('localization'):
                    # Weights Tensor: positive mask + random negative.
                    weights = alpha * pmask
                    loss = custom_layers.abs_smooth(localisations[i] - glocalisations[i])
                    loss = tf.contrib.losses.compute_weighted_loss(loss, weights)
                    l_loc.append(loss)

        # Total losses in summaries...
        with tf.name_scope('total'):
            tf.summary.scalar('cross_entropy', tf.add_n(l_cross))
            tf.summary.scalar('localization', tf.add_n(l_loc))

5 总结

本文对SSD: Single Shot MultiBox Detector的tensorflow的关键源代码进行了解析。本文采用的源码来自于balancap/SSD-Tensorflow。源码作者写得非常详细,内容较多(其它还包括了图像预处理,多GPU并行训练等许多内容),因此只选取了关键代码进行解析。在看完论文后,再结合关键代码分析,结构就很清晰了。SSD代码实现的关键点为:1,多尺度特征图检测网络结构;2,anchor boxes生成;3,ground truth预处理;4,目标函数。SSD和YOLOv2类似,可以实现高准确率下的实时目标检测,是非常值得研究和改进的目标检测方法。