欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

卷积神经网络练习_CNN_MNIST

程序员文章站 2024-03-14 21:34:59
...

【参考】:第一阶段-入门详细图文讲解tensorflow1.4 -(五)MNIST-CNN 作者:Alun_Sun

【参考】:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/5-04-CNN2/ 作者:Mofan

  •   一图胜千言:

卷积神经网络练习_CNN_MNIST


# 基本的处理步骤 CNN_MNIST
# [1] 定义计算准确度函数
# [2]初始化weight, bias
# [3]卷积与池化 convolution1&2 and Pooling1&2
# [4]全连接层&优化层 fun1 layer
# [5]输出层 fun2 layer
# [6]定义cross,运行打印结果
  • 具体代码如下:
from __future__ import print_function
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

#【1】定义计算准确度函数
def compute_accuracy(v_xs, v_ys):
    global prediction
    y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
    correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
    return result

#【2】初始化weight_variable, bias_variable. conv2d, max_poll_2x2变量,并初始化
def weight_variable(shape):
    inital = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(inital)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def conv2d(x, W):
    #stride[1,x_movement, y_movement,1]
    return  tf.nn.conv2d(x, W, strides=[1,1,1,1], padding= 'SAME') #左右跨1步

def max_poll_2x2(x):
    # stride[1,x_movement, y_movement,1] 第一位和第四位一致
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') #左右跨2步

#类似于定义形参 xs, ys
xs = tf.placeholder(tf.float32, [None, 784])
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 28, 28, 1]) #这里图片因为是黑白的,高度只有1

#【3】卷积与池化,两层conv1,conv2,加h_pool1, h_pool2, 两层func1, func2,
#图片从28*28*32 --> 14*14*32  -->  7*7*64 --> 1维[7*7*64]  -->  1维[10]
##conv1 layer
W_conv1 = weight_variable([5, 5, 1, 32]) #patch 5*5, insize 1, outsize 32, 用5*5的小方块扫描,传入的高度为1,输出的高度为32
b_conv1 = bias_variable(([32]))
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #ouputsize: 28*28*32, 这里图片长宽不变,因为用的是same padding
h_pool1 = max_poll_2x2(h_conv1)                          #outsize: 14*14*32 ,这里pooling 后长宽变成了14*14
#第一层后,长宽变为了14*14,高度为32

#conv2 layer,
W_conv2 = weight_variable([5, 5, 32, 64]) #patch 5*5, insize 32, outsize 64 , 用5*5的小方块扫描,传入的为32,让它输出为64的高度
b_conv2 = bias_variable(([64]))
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) #ouputsize: 14*14*64, 这里图片长宽不变,因为用的是same padding
h_pool2 = max_poll_2x2(h_conv2)                          #outsize: 7*7*64
#第二层后,长宽变为了7*7,高度为64

#【4】全连接层func1 & 优化层dropout
#func1 layer
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
#[n_sample, 7,7,64] --> 变成1个维度的[n_sample, 7*7*64]
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

#【5】输出层
#func2 layer
W_fc2 = weight_variable([1024, 10]) #输入1024高度,最后需要输出的10的高度,用来分类
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)


#【6】定义cross
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

sess = tf.Session()
#初始化变量开始运行,打印结果
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
    init = tf.initialize_all_variables()
else:
    init = tf.global_variables_initializer()
sess.run(init)

#输出
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={xs:batch_xs, ys:batch_ys, keep_prob:0.5})
    if i % 50 == 0:
        print(compute_accuracy(mnist.test.images[:1000], mnist.test.labels[:1000]))

输出结果如下:

# 2018-05-03 19:58:07.214328: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
# 0.107
# 0.765
# 0.87
# 0.904
# 0.909
# 0.92
# 0.926
# 0.938
# 0.941
# 0.937
# 0.945
# 0.956
# 0.95
# 0.96
# 0.958
# 0.96
# 0.97
# 0.968
# 0.971
# 0.967

相关标签: RNN MNIST