Tensorflow入门
Tensorflow初探:
需要理解的基本问题:
-
如何将计算流程表示成图?
-
怎样通过session来执行图计算?
-
如何将数据表示成tensors?
-
如何用Variables来保持状态信息?
-
如何分别使用feeds和fetches来填充数据和抓取任意的结果?
1. TensorFlow 是什么
是一个深度学习库,由 Google 开源,可以对定义在 Tensor(张量)上的函数自动求导。
Tensor(张量)意味着 N 维数组,Flow(流)意味着基于数据流图的计算,TensorFlow即为张量从图的一端流动到另一端。
它的一大亮点是支持异构设备分布式计算,它能够在各个平台上自动运行模型,从电话、单个CPU / GPU到成百上千GPU卡组成的分布式系统。
支持CNN、RNN和LSTM算法,是目前在 Image,NLP 最流行的深度神经网络模型。
2. 为什么需要 TensorFlow 等库
深度学习通常意味着建立具有很多层的大规模的神经网络。
除了输入X,函数还使用一系列参数,其中包括标量值、向量以及最昂贵的矩阵和高阶张量。
在训练网络之前,需要定义一个代价函数,常见的代价函数包括回归问题的方差以及分类时候的交叉熵。
训练时,需要连续的将多批新输入投入网络,对所有的参数求导后,代入代价函数,从而更新整个网络模型。
这个过程中有两个主要的问题:1. 较大的数字或者张量在一起相乘百万次的处理,使得整个模型代价非常大。2. 手动求导耗时非常久。
所以 TensorFlow 的对函数自动求导以及分布式计算,可以帮我们节省很多时间来训练模型。
3. Tensorflow工作原理
TensorFlow是用数据流图(data flow graphs)技术来进行数值计算的。
数据流图是描述有向图中的数值计算过程。
有向图中,节点通常代表数学运算,边表示节点之间的某种联系,它负责传输多维数据(Tensors)。
节点可以被分配到多个计算设备上,可以异步和并行地执行操作。因为是有向图,所以只有等到之前的入度节点们的计算状态完成后,当前节点才能执行操作。
4. TensorFlow 的优点
第一,基于Python,写的很快并且具有可读性。
第二,在多GPU系统上的运行更为顺畅。
第三,代码编译效率较高。
第四,社区发展的非常迅速并且活跃。
第五,能够生成显示网络拓扑结构和性能的可视化图。
5. 实例分析(计算矩阵相乘):
1. 构建图
import tensorflow as tf
# 创建一个 常量 op, 返回值 'matrix1' 代表这个 1x2 矩阵.
matrix1 = tf.constant([[3., 3.]])
# 创建另外一个 常量 op, 返回值 'matrix2' 代表这个 2x1 矩阵.
matrix2 = tf.constant([[2.],[2.]])
# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'product' 代表矩阵乘法的结果.
product = tf.matmul(matrix1, matrix2)
默认图有三个节点, 两个 constant() op, 和一个 matmul() op. 为了真正进行矩阵相乘运算, 并得到矩阵乘法的结果, 你必须在会话里启动这个图.
2. 张量 Tensor
从向量空间到实数域的多重线性映射(multilinear maps)(v是向量空间,v*是对偶空间)
例如代码中的 [[3., 3.]],Tensor 可以看作是一个 n 维的数组或列表。在 TensorFlow 中用 tensor 数据结构来代表所有的数据, 计算图中, 操作间传递的数据都是 tensor。
3. 在一个会话中启动图
创建一个 Session 对象, 如果无任何创建参数, 会话构造器将启动默认图。
会话负责传递 op 所需的全部输入,op 通常是并发执行的。
# 启动默认图.
sess = tf.Session()
# 调用 sess 的 'run()' 方法, 传入 'product' 作为该方法的参数,
# 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op),
# 向方法表明, 我们希望取回矩阵乘法 op 的输出.
result = sess.run(product)
# 返回值 'result' 是一个 numpy `ndarray` 对象.
print result
# ==> [[ 12.]]
# 任务完成, 需要关闭会话以释放资源。
sess.close()
总结:
-
TF用图来表示计算任务,图中的节点被称之为operation,简称op。
-
一个节点获得0个或者多个张量tensor,执行计算,产生0个或多个张量。
-
图必须在会话(session)里被启动,会话将图的op分发到CPU或者GPU之类的设备上,同时提供执行op的方法,这些方法执行后,将产生的张量返回。
上一篇: java8-lamdba