欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

TensorFlow Object Detection API

程序员文章站 2024-03-14 10:05:22
...

安装jupyter notebook

python -m pip install –upgrade –force pip

pip install setuptools==33.1.1

sudo pip install jupyter

以管理员身份打开
jupyter notebook –allow-root

安装相应的依赖环境

Protobuf 2.6 ,Pillow 1.0 ,lxml ,Matplotlib

Tensorflow Object Detection API使用Protobufs来配置模型和训练参数。在使用框架之前,必须编译Protobuf库。这应该通过从下载解压的models/research目录运行以下命令来完成

bin/protoc object_detection/protos/*.proto –python_out=.

下载model

下载 https://github.com/tensorflow/models ,并解压在home目录,以下操作大多在解压后的model目录下操作

测试模型

先下载一个ssd_mobilenet_v1_coco,解压到models/research/objection_detection目录下

修改文件

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import cv2
import time  

from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")

from utils import label_map_util
from utils import visualization_utils as vis_util

# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
#MODEL_NAME = 'faster_rcnn_resnet101_coco_11_06_2017'
#MODEL_NAME = 'ssd_inception_v2_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'

# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('/home/hmw/tensorflow/models/object_detection/data', 'mscoco_label_map.pbtxt')

#extract the ssd_mobilenet
start = time.clock()
NUM_CLASSES = 90
opener = urllib.request.URLopener()
#opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
  file_name = os.path.basename(file.name)
  if 'frozen_inference_graph.pb' in file_name:
    tar_file.extract(file, os.getcwd())
end= time.clock()
print 'load the model',(end-start)

detection_graph = tf.Graph()
with detection_graph.as_default():
  od_graph_def = tf.GraphDef()
  with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)

categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

cap = cv2.VideoCapture(0)
with detection_graph.as_default():
  with tf.Session(graph=detection_graph) as sess:
      writer = tf.summary.FileWriter("logs/", sess.graph)  
      sess.run(tf.global_variables_initializer())  
      while(1):
    start = time.clock()
        ret, frame = cap.read()
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
        image_np=frame
        # the array based representation of the image will be used later in order to prepare the
        # result image with boxes and labels on it.
        # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
        image_np_expanded = np.expand_dims(image_np, axis=0)
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
        # Each box represents a part of the image where a particular object was detected.
        boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
        # Each score represent how level of confidence for each of the objects.
        # Score is shown on the result image, together with the class label.
        scores = detection_graph.get_tensor_by_name('detection_scores:0')
        classes = detection_graph.get_tensor_by_name('detection_classes:0')
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')
    # Actual detection.
        (boxes, scores, classes, num_detections) = sess.run(
          [boxes, scores, classes, num_detections],
          feed_dict={image_tensor: image_np_expanded})
        # Visualization of the results of a detection.
        vis_util.visualize_boxes_and_labels_on_image_array(
          image_np,
          np.squeeze(boxes),
          np.squeeze(classes).astype(np.int32),
          np.squeeze(scores),
          category_index,
          use_normalized_coordinates=True,
          line_thickness=6)
    end = time.clock()
    print 'frame:',1.0/(end - start)
    #print 'frame:',time.time() - start
    cv2.imshow("capture", image_np)
    cv2.waitKey(1)
cap.release()
cv2.destroyAllWindows() 

结果

TensorFlow Object Detection API

TensorFlow Object Detection API

链接

链接:http://pan.baidu.com/s/1nvQf221 密码:9twg