欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

浅析 工业互联网的生态创新与技术创新

程序员文章站 2022-03-20 08:45:24
工业互联网的目的是激发制造业生产力和竞争力,通过多维数据采集、分析和应用,赋能工业制造业、工业服务业和装备制造业全产业链。 帮助工业制造企业实...

工业互联网的目的是激发制造业生产力和竞争力,通过多维数据采集、分析和应用,赋能工业制造业、工业服务业和装备制造业全产业链。


帮助工业制造企业实现价值增值,实现更高效、更经济和更绿色的制造能力构建。优化工业服务供应链创新,实现高质、高效的工业服务与装备制造供给侧结构性改革。


浅析 工业互联网的生态创新与技术创新

图一:工业互联网&工业服务创新阶段


关键词:设备管理、工业服务、工业互联网、技术创新、生态创新、服务型制造


从设备管理说起


设备管理是工业制造企业基础管理活动,是对生产设施的物质运动和价值运动进行全过程(从规划、设计、选型、购置、安装、验收、使用、保养、维修、改造、更新直至报废)的科学型管理。设备管理是一项综合性工程,在制造业向数字化、智能化和自动化的价值转型过程中,扮演至关重要的作用,体现在其经济属性、管理属性和技术属性方面,这在工业互联网时代尤为重要。


经济属性:以生产效率、质量为关注重心,以提升设备可用度(提升MTBF平均故障间隔时间,降低MTTR平均故障修复时间,可用度A=(MTBF+MTTR)/MTBF)、降低维修费用、降低备件库存为目标。换句话讲,设备管理的价值体现在最少的故障、最快的故障恢复确保生产系统的稳定性和可靠性(开源),并以最低的维护成本(节流)、最低的库存(节省库存、提高制造业现金流),确保工业制造业的持续盈利能力构建;


管理属性:对企业内部而言,设备管理涉及操作使用部门、维修改造部门、设备及其备件采购部门,决策部门构成。对工业服务外部而言,涉及设备制造厂商、设计机构、施工单位、设备及备件代理单位、维修单位等构成。这就给设备内部管理和外部资源协调带来了很大的挑战,全员和全生态系统的积极参与和配合,需要良好的管理机制和供应链协同机制完成。


技术属性:制造系统是由设备构成,而设备则是规划、设计和制造出来的,设备的功能性和适用性需要匹配加工原理和控制能力,在这些过程中,设备故障也被同时制造出来。而正是如此,设备的固有可用度也在制造和安装后被确定,故障模型也同样被确认。这些故障特征可以通过外在的表现映射出来,如振动、温度、压力以及控制逻辑报警等方式呈现出来,通过对这些特征的把握,我们可以更好的调整、优化和提前处理这些故障,同时这些数据反馈到设计与制造体系中,可做到设计优化和服务创新中来。正是因为技术属性,驱动了以物联网为基础连接的工业互联网平台应用的创新革命。


浅析 工业互联网的生态创新与技术创新

图二:企业设备管理价值模型


数字运维+工业互联网的生态创新


任何技术创新,应当首先构建于合适的场景和成熟的市场条件,这是非常重要的基础。面向制造业的工业互联网创新,应构建在制造企业明确清晰设备管理价值,具备运维管理的基础能力,以及工业服务和装备制造商有序的价值匹配基础条件之上。这是许多工业互联网平台极力回避或者不明就里的领域,认为涉及到人、或者低价竞标等潜在规则的事,就选择了排斥和逃避。但实际上,如果不解决企业价值问题,不解决人的问题,不解决大多数的服务商和制造商利益关切,工业互联网平台就走进了死胡同,要么市场天花板太低,要么难以为继,进退两难。


工业互联网的本质是需要解决和重建设备使用方(用户)、设备服务方(工业维修、设备与工业品提供、设备管理与技术咨询、设备安装与非标制造商)和设备制造方(装备制造商、工业品制造商)之间的供需匹配关系与机制。


1)设备管理创新与需求侧优化


我国工业企业设备管理普遍以事后维修为主,相对于欧美生产维修制、日本TPM全面生产维护中强调主动性预测性和预防性维修管理,我国制造业工业运维能力普遍较弱。实体经济在投资、劳动力、资源和环境等低成本要素来驱动经济规模的模式开始出现瓶颈,工业制造业向高效、绿色和节约的质量转型方向发展。工业制造业发展出现非线性的特征,这表现为:


市场表现为多品种,短交期、低价格竞争,对制造要素诉求表现为高效率,低成本和低库存,对制造系统的可靠性和稳定性要求骤然提高;制造企业对管理能力、制造系统改善的诉求更为迫切,与管理基础和知识积累较弱、高技能人才短缺与员工流失率偏高,形成矛盾。相对于欧美和日本等国家,几十年的管理基础与知识积累,我国制造业必须突破原有的传统管理咨询方法和思路。基于人工智能的数字运维,将有利于实现:


利用人工智能技术加速生产员工、维修人员知识交互和积累,实现故障异常的高效处理和维修经验的重用和企业知识积累;强化主动性维修,提高日常点检、专业点检、预防性维修的执行效率,提高异常和故障判断的准确性;数据驱动运维决策,实现质量和效率(OEE综合效率)的有效保障,以提升系统可用性,降低运维费用和备件库存为运维目标,智能分析制约条件和因素,精准提升运维能力。大幅降低设备管理信息化上线成本,减少或杜绝对于传统管理咨询的依赖性,实现数据节人和提效的双赢能力。


浅析 工业互联网的生态创新与技术创新

图三:数字运维-“精益卫士”人工智能维修辅助系统


2)大数据引发工业服务与装备制造业生态变革


运维管理的提升,带来的是对工业服务和装备需求的量化,这将有利于改变B2B工业服务生态。在数字运维普及应用基础上,基于大数据和云计算条件下的工业互联网服务平台,将有利于:


工业APP培育计划,工业服务需求精准匹配与制造型服务。数字运维带来制造业运维能力的提升,实质上是工业服务、装备需求及工业品需求精准挖掘,通过大数据分析,实现规模化订单能力。基于数字运维导向的工互联网服务平台:向供应链端连接和培育工业APP,如工业品供应、维修共享、咨询服务、知识社区、远程维护等;向下支持MRO服务社区落地,展开融资租赁、运维托管、工业品集供,维修线下共享与运维外包等服务。


浅析 工业互联网的生态创新与技术创新

图四:数据驱动工业服务变革


2. 利于服务优化和产品升级的装备服务型制造。


当数字运维沉淀设备维修数据,对于数据的深度分析,可识别出不同厂家、不同产品类型,不同型号的售后质量表现、故障实效分析、维修响应等客观数据,这对于装备制造商优化产品设计、制定销售和服务策略将起到实质的帮助。


3. 基于数据的供应链金融创新,改变B2B产业生态。


对于工业服务商而言,交易的制约难点在于销售回款,对于制造业用户而言,在于交易后的质量保障。解决这一痛点的关键,是改变交易收付款方式,强化风险保障能力。基于数字运维大数据分析,借助供应链金融创新,交易双方通过银行授信解决交易收付款,并通过运维能力、交付能力和交易诚信数据,发展相应的保险业务,将有利于降低交易双方的工程风险。这些改变,将有效解决B2B产业现状,减少交易款拖欠、承兑支付所带来的弊端,促进制造业、工业服务商和设备制造商重视诚信,强化供应链效率和质量。


基于工业物联网的技术应用创新


工业物联网是数字运维的技术补充,传统意义上认为,工业物联网可以跳开人的因素,借助设备物理参数反应出系统缺陷分析应用,从而改变工业生态,促进制造业转型升级。但我们从现存案例中分析,可以识别出其中的一些关键因素,将有利于建立更完善的工业生态。


案例1:GE Predix 工业互联网平台


GE是是世界上最大的提供技术和服务业务的B2B企业。受全球工业增速减缓的影响,GE提出工业互联网解决方案,一方面提升自身预测性服务能力,一方面面向全球工业服务商、装备制造商提供新的服务方式和增长点。从GE自身来说,这自然是好事一件,大数据分析应用能实现诸如航空发动机,预期中将预测性维修准确性提升从70%,提升至99.9%左右,这对于服务质量和服务成本来讲,这是飞跃的进步。但在新的业务增长上,也并不顺利。是技术成功并不意味着商业成功,其一是同行业未必采用其服务,其二,这要求用户具备一定的工业运维能力,以及装备具备良好的可靠性能力和价值基础。


案例2:树根互联工业互联网平台


树根互联源自三一重工这样的大型B2B制造业,在国内工程机械交易受阻的条件下,利用物联网有效解决了租赁问题,由此诞生了国内的工业互联网平台解决方案。树根互联是从装备制造商的为出发点,以数据赋能产品设计、产品服务,并以融资租赁完成商业闭环,这至少在三一重工应用是成功的。尽管如此,但同样面临新增业务的障碍。我们发现,与三一这样有竞争关系的装备制造商并不原意为此买单,这让业务拓展的范围变得极其有限。而将业务范围瞄向非工程机械领域的工业制造业时,骤然发现,技术型的解决方案和实施团队,并不能针对工业制造企业运维管理提供有效和全面的解决方案。工业互联网平台企业借助于技术应用的突破,依然是未来主要发展方向。结合我国工业制造业实际状况,未来在这三个方向上有望突围。


方向1:数字制造+服务型制造


浅析 工业互联网的生态创新与技术创新

图五:工业互联网平台+服务型制造


实施主体:装备制造商、工业品制造商,如工程机械、农用机械、汽车、摩托车总装、家电企业等具备规模化生产能力的制造企业。


实施目标:建立服务型制造+生产决策优化能力。


实施要点:数字运维+数字制造+数字研发+自动化改造服务商+大数据分析服务商,与工业互联网平台服务商实现协同构建。


实施难点:需要主体企业具备一定的经营管理、现场精益化基础,产品在市场表现突出,盈利能力较强的制造业为佳。


非装备制造或工业品制造商,由于工业互联网平台并不能解决服务型制造赋能问题,通常合适在可靠性要求较高的行业,如大型石化、电网和电力企业,而对于一般中小型制造业来讲,经济性是一大挑战。


方向2:能源托管与物流租赁服务


浅析 工业互联网的生态创新与技术创新

图六:工业互联网+服务托管/设备租赁


实施主体:设备或成套系统的运营托管商、运维服务商及租赁商,如能源托管服务商、空压机运维服务商、叉车等物流设施租赁商,这些设备通常不是工业制造业的主体设备,一般适合第三方运营管理。


实施目标:提高运营效率、降低运营成本,提高装备的可靠性和维修性。


实施要点:重视设备的可靠性、维修性和系统控制性,并不是简单的采集现有数据,并注重在运维层面与数字运维对接,形成故障处理闭环和运维能力分析应用。


实施难点:商业成功取决于服务商的商业模式,适合在工业园区形成规模化和服务能力闭环。


方向3:关键/通用设备+预测性维修


实施主体:绝大部分制造业工厂,通用性较强或关键的设备,如风电行业风机、机械加工行业机床、齿轮箱(减速机)、化工行业较为重要的机泵、压缩机等设备。


实施目标:提高关键设备的预测性维修普及率和预测性诊断准确性,确保产线整体的稳定性和可靠性,提高其可用度,降低其运维成本。


实施要点:以设备的可靠性、维修性为重要关切点,尤其注重垂直领域原理知识应用研究和沉淀,如设计机械故障的振动分析、油液分析,以及针对于特定类型设备的故障模型研究和分析,并在运维层面与数字运维对接,形成故障处理闭环和运维能力分析应用。


实施难点:形成垂直领域的产品化方案,注意结合在线和离线的数据采集方式组合,在综合解决方案中考虑和设备制造厂家、第三方运维服务商和数字运维解决服务商形成商业闭环,以实现实施的经济性、以及预测性诊断与维修闭环的完整性,提高预测性维修的准确性和有效性。


工业互联网创新的意义,在于驱动工业服务生态重建,既是复杂的技术解决方案,也是B2B互联网商业的有效闭环。在实践中,注重理论与实际、业务与技术、战略和战术、IT与OT、线上与线下的有效融合,聚焦于工业服务社会化程度较高的工业产业园区,践行工业服务与互联网产业化研究、应用和孵化落地一体化的区域创新示范建设工程,是工业互联网从概念走向商业成熟的关键。