欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Java访问Hadoop分布式文件系统HDFS的配置说明

程序员文章站 2024-03-12 08:08:26
配置文件 m103替换为hdfs服务地址。 要利用java客户端来存取hdfs上的文件,不得不说的是配置文件hadoop-0.20.2/conf/core-site.x...

配置文件

m103替换为hdfs服务地址。
要利用java客户端来存取hdfs上的文件,不得不说的是配置文件hadoop-0.20.2/conf/core-site.xml了,最初我就是在这里吃了大亏,所以我死活连不上hdfs,文件无法创建、读取。

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
<!--- global properties -->
<property>
<name>hadoop.tmp.dir</name>
<value>/home/zhangzk/hadoop</value>
<description>a base for other temporary directories.</description>
</property>
<!-- file system properties -->
<property>
<name>fs.default.name</name>
<value>hdfs://linux-zzk-113:9000</value>
</property>
</configuration>

配置项:hadoop.tmp.dir表示命名节点上存放元数据的目录位置,对于数据节点则为该节点上存放文件数据的目录。

配置项:fs.default.name表示命名的ip地址和端口号,缺省值是file:///,对于javaapi来讲,连接hdfs必须使用这里的配置的url地址,对于数据节点来讲,数据节点通过该url来访问命名节点。

hdfs-site.xml

<?xml version="1.0" encoding="utf-8"?>

<!--autogenerated by cloudera manager-->
<configuration>
 <property>
  <name>dfs.namenode.name.dir</name>
  <value>file:///mnt/sdc1/dfs/nn</value>
 </property>
 <property>
  <name>dfs.namenode.servicerpc-address</name>
  <value>m103:8022</value>
 </property>
 <property>
  <name>dfs.https.address</name>
  <value>m103:50470</value>
 </property>
 <property>
  <name>dfs.https.port</name>
  <value>50470</value>
 </property>
 <property>
  <name>dfs.namenode.http-address</name>
  <value>m103:50070</value>
 </property>
 <property>
  <name>dfs.replication</name>
  <value>3</value>
 </property>
 <property>
  <name>dfs.blocksize</name>
  <value>134217728</value>
 </property>
 <property>
  <name>dfs.client.use.datanode.hostname</name>
  <value>false</value>
 </property>
 <property>
  <name>fs.permissions.umask-mode</name>
  <value>022</value>
 </property>
 <property>
  <name>dfs.namenode.acls.enabled</name>
  <value>false</value>
 </property>
 <property>
  <name>dfs.block.local-path-access.user</name>
  <value>cloudera-scm</value>
 </property>
 <property>
  <name>dfs.client.read.shortcircuit</name>
  <value>false</value>
 </property>
 <property>
  <name>dfs.domain.socket.path</name>
  <value>/var/run/hdfs-sockets/dn</value>
 </property>
 <property>
  <name>dfs.client.read.shortcircuit.skip.checksum</name>
  <value>false</value>
 </property>
 <property>
  <name>dfs.client.domain.socket.data.traffic</name>
  <value>false</value>
 </property>
 <property>
  <name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
  <value>true</value>
 </property>
 <property>
  <name>fs.http.impl</name>
  <value>com.scistor.datavision.fs.httpfilesystem</value>
 </property>
</configuration>

mapred-site.xml

<?xml version="1.0" encoding="utf-8"?>

<!--autogenerated by cloudera manager-->
<configuration>
 <property>
  <name>mapreduce.job.split.metainfo.maxsize</name>
  <value>10000000</value>
 </property>
 <property>
  <name>mapreduce.job.counters.max</name>
  <value>120</value>
 </property>
 <property>
  <name>mapreduce.output.fileoutputformat.compress</name>
  <value>true</value>
 </property>
 <property>
  <name>mapreduce.output.fileoutputformat.compress.type</name>
  <value>block</value>
 </property>
 <property>
  <name>mapreduce.output.fileoutputformat.compress.codec</name>
  <value>org.apache.hadoop.io.compress.snappycodec</value>
 </property>
 <property>
  <name>mapreduce.map.output.compress.codec</name>
  <value>org.apache.hadoop.io.compress.snappycodec</value>
 </property>
 <property>
  <name>mapreduce.map.output.compress</name>
  <value>true</value>
 </property>
 <property>
  <name>zlib.compress.level</name>
  <value>default_compression</value>
 </property>
 <property>
  <name>mapreduce.task.io.sort.factor</name>
  <value>64</value>
 </property>
 <property>
  <name>mapreduce.map.sort.spill.percent</name>
  <value>0.8</value>
 </property>
 <property>
  <name>mapreduce.reduce.shuffle.parallelcopies</name>
  <value>10</value>
 </property>
 <property>
  <name>mapreduce.task.timeout</name>
  <value>600000</value>
 </property>
 <property>
  <name>mapreduce.client.submit.file.replication</name>
  <value>1</value>
 </property>
 <property>
  <name>mapreduce.job.reduces</name>
  <value>24</value>
 </property>
 <property>
  <name>mapreduce.task.io.sort.mb</name>
  <value>256</value>
 </property>
 <property>
  <name>mapreduce.map.speculative</name>
  <value>false</value>
 </property>
 <property>
  <name>mapreduce.reduce.speculative</name>
  <value>false</value>
 </property>
 <property>
  <name>mapreduce.job.reduce.slowstart.completedmaps</name>
  <value>0.8</value>
 </property>
 <property>
  <name>mapreduce.jobhistory.address</name>
  <value>m103:10020</value>
 </property>
 <property>
  <name>mapreduce.jobhistory.webapp.address</name>
  <value>m103:19888</value>
 </property>
 <property>
  <name>mapreduce.jobhistory.webapp.https.address</name>
  <value>m103:19890</value>
 </property>
 <property>
  <name>mapreduce.jobhistory.admin.address</name>
  <value>m103:10033</value>
 </property>
 <property>
  <name>mapreduce.framework.name</name>
  <value>yarn</value>
 </property>
 <property>
  <name>yarn.app.mapreduce.am.staging-dir</name>
  <value>/user</value>
 </property>
 <property>
  <name>mapreduce.am.max-attempts</name>
  <value>2</value>
 </property>
 <property>
  <name>yarn.app.mapreduce.am.resource.mb</name>
  <value>2048</value>
 </property>
 <property>
  <name>yarn.app.mapreduce.am.resource.cpu-vcores</name>
  <value>1</value>
 </property>
 <property>
  <name>mapreduce.job.ubertask.enable</name>
  <value>false</value>
 </property>
 <property>
  <name>yarn.app.mapreduce.am.command-opts</name>
  <value>-djava.net.preferipv4stack=true -xmx1717986918</value>
 </property>
 <property>
  <name>mapreduce.map.java.opts</name>
  <value>-djava.net.preferipv4stack=true -xmx1717986918</value>
 </property>
 <property>
  <name>mapreduce.reduce.java.opts</name>
  <value>-djava.net.preferipv4stack=true -xmx2576980378</value>
 </property>
 <property>
  <name>yarn.app.mapreduce.am.admin.user.env</name>
  <value>ld_library_path=$hadoop_common_home/lib/native:$java_library_path</value>
 </property>
 <property>
  <name>mapreduce.map.memory.mb</name>
  <value>2048</value>
 </property>
 <property>
  <name>mapreduce.map.cpu.vcores</name>
  <value>1</value>
 </property>
 <property>
  <name>mapreduce.reduce.memory.mb</name>
  <value>3072</value>
 </property>
 <property>
  <name>mapreduce.reduce.cpu.vcores</name>
  <value>1</value>
 </property>
 <property>
  <name>mapreduce.application.classpath</name>
  <value>$hadoop_mapred_home/*,$hadoop_mapred_home/lib/*,$mr2_classpath,$cdh_hcat_home/share/hcatalog/*,$cdh_hive_home/lib/*,/etc/hive/conf,/opt/cloudera/parcels/cdh/lib/udps/*</value>
 </property>
 <property>
  <name>mapreduce.admin.user.env</name>
  <value>ld_library_path=$hadoop_common_home/lib/native:$java_library_path</value>
 </property>
 <property>
  <name>mapreduce.shuffle.max.connections</name>
  <value>80</value>
 </property>
</configuration>

利用javaapi来访问hdfs的文件与目录

package com.demo.hdfs;

import java.io.bufferedinputstream;
import java.io.fileinputstream;
import java.io.filenotfoundexception;
import java.io.fileoutputstream;
import java.io.ioexception;
import java.io.inputstream;
import java.io.outputstream;
import java.net.uri;

import org.apache.hadoop.conf.configuration;
import org.apache.hadoop.fs.fsdatainputstream;
import org.apache.hadoop.fs.fsdataoutputstream;
import org.apache.hadoop.fs.filestatus;
import org.apache.hadoop.fs.filesystem;
import org.apache.hadoop.fs.path;
import org.apache.hadoop.io.ioutils;
import org.apache.hadoop.util.progressable;

/**
 * @author zhangzk
 * 
 */
public class filecopytohdfs {

 public static void main(string[] args) throws exception {
 try {
  //uploadtohdfs();  
  //deletefromhdfs();
  //getdirectoryfromhdfs();
  appendtohdfs();
  readfromhdfs();
 } catch (exception e) {
  // todo auto-generated catch block
  e.printstacktrace();
 }
 finally
 {
  system.out.println("success");
 }
 }

 /**上传文件到hdfs上去*/

 private static void uploadtohdfs() throws filenotfoundexception,ioexception {
 string localsrc = "d://qq.txt";
 string dst = "hdfs://192.168.0.113:9000/user/zhangzk/qq.txt";
 inputstream in = new bufferedinputstream(new fileinputstream(localsrc));
 configuration conf = new configuration();
 
 filesystem fs = filesystem.get(uri.create(dst), conf);
 outputstream out = fs.create(new path(dst), new progressable() {
  public void progress() {
  system.out.print(".");
  }
 });
 ioutils.copybytes(in, out, 4096, true);
 }





 /**从hdfs上读取文件*/
 private static void readfromhdfs() throws filenotfoundexception,ioexception {
 string dst = "hdfs://192.168.0.113:9000/user/zhangzk/qq.txt"; 
 configuration conf = new configuration(); 
 filesystem fs = filesystem.get(uri.create(dst), conf);
 fsdatainputstream hdfsinstream = fs.open(new path(dst));
 
 outputstream out = new fileoutputstream("d:/qq-hdfs.txt"); 
 byte[] iobuffer = new byte[1024];
 int readlen = hdfsinstream.read(iobuffer);

 while(-1 != readlen){
 out.write(iobuffer, 0, readlen); 
 readlen = hdfsinstream.read(iobuffer);
 }
 out.close();
 hdfsinstream.close();
 fs.close();
 }
 

 /**以append方式将内容添加到hdfs上文件的末尾;注意:文件更新,需要在hdfs-site.xml中添<property><name>dfs.append.support</name><value>true</value></property>*/
 private static void appendtohdfs() throws filenotfoundexception,ioexception {
 string dst = "hdfs://192.168.0.113:9000/user/zhangzk/qq.txt"; 
 configuration conf = new configuration(); 
 filesystem fs = filesystem.get(uri.create(dst), conf); 
 fsdataoutputstream out = fs.append(new path(dst));

 int readlen = "zhangzk add by hdfs java api".getbytes().length;

 while(-1 != readlen){
 out.write("zhangzk add by hdfs java api".getbytes(), 0, readlen);
 }
 out.close();
 fs.close();
 }
 

 /**从hdfs上删除文件*/
 private static void deletefromhdfs() throws filenotfoundexception,ioexception {
 string dst = "hdfs://192.168.0.113:9000/user/zhangzk/qq-bak.txt"; 
 configuration conf = new configuration(); 
 filesystem fs = filesystem.get(uri.create(dst), conf);
 fs.deleteonexit(new path(dst));
 fs.close();
 }
 

 /**遍历hdfs上的文件和目录*/
 private static void getdirectoryfromhdfs() throws filenotfoundexception,ioexception {
 string dst = "hdfs://192.168.0.113:9000/user/zhangzk"; 
 configuration conf = new configuration(); 
 filesystem fs = filesystem.get(uri.create(dst), conf);
 filestatus filelist[] = fs.liststatus(new path(dst));
 int size = filelist.length;
 for(int i = 0; i < size; i++){
 system.out.println("name:" + filelist[i].getpath().getname() + "/t/tsize:" + filelist[i].getlen());
 }
 fs.close();
 } 

}

注意:对于append操作,从hadoop-0.21版本开始就不支持了,关于append的操作可以参考javaeye上的一篇文档。