Netty中inboundHandler与outboundHandler的执行顺序
一个疑问
首先一切的一切,是从一次意外开始。
在写一个netty的server的时候,这里有四个handler,inboundHandler实现的类EchoInHandler1与EchoInHandler2,outboundHandler实现的类EchoOutHandler1与EchoOutHandler2;
在添加到pipeline的时候,如果这些handler的存放到pipeline的位置为EchoOutHandler1-EchoOutHandler2-EchoInHandler1-EchoInHandler2,那么一切就正常了。
开始监听,端口为:/127.0.0.1:20000
in1
in2
接收客户端数据:QUERY TIME ORDER
server向client发送数据
out2
out1
Complete1
但是如果存放的顺序是EchoInHandler1-EchoInHandler2-EchoOutHandler1-EchoOutHandler2,那么会出现在出站的时候,EchoOutHandler1与EchoOutHandler2却没有执行。
开始监听,端口为:/127.0.0.1:20000
in1
in2
接收客户端数据:QUERY TIME ORDER
server向client发送数据
Complete1
这是为什么呢?
PS:如果想知道答案可以直接看最后一节
public void start() throws Exception {
EventLoopGroup eventLoopGroup = null;
try {
//server端引导类
ServerBootstrap serverBootstrap = new ServerBootstrap();
//连接池处理数据
eventLoopGroup = new NioEventLoopGroup();
serverBootstrap.group(eventLoopGroup)
.channel(NioServerSocketChannel.class)
//指定通道类型为NioServerSocketChannel,一种异步模式,OIO阻塞模式为OioServerSocketChannel
.localAddress("localhost",port)
//设置InetSocketAddress让服务器监听某个端口已等待客户端连接。
.childHandler(new ChannelInitializer<Channel>() {
//设置childHandler执行所有的连接请求
@Override
protected void initChannel(Channel ch) throws Exception {
// 注册两个InboundHandler,执行顺序为注册顺序,所以应该是InboundHandler1 InboundHandler2
// 注册两个OutboundHandler,执行顺序为注册顺序的逆序,所以应该是OutboundHandler2 OutboundHandler1
ch.pipeline().addLast(new EchoInHandler1());
ch.pipeline().addLast(new EchoInHandler2());
ch.pipeline().addLast(new EchoOutHandler1());
ch.pipeline().addLast(new EchoOutHandler2());
}
});
// 最后绑定服务器等待直到绑定完成,调用sync()方法会阻塞直到服务器完成绑定,
// 然后服务器等待通道关闭,因为使用sync(),所以关闭操作也会被阻塞。
ChannelFuture channelFuture = serverBootstrap.bind().sync();
System.out.println("开始监听,端口为:" + channelFuture.channel().localAddress());
channelFuture.channel().closeFuture().sync();
} finally {
eventLoopGroup.shutdownGracefully().sync();
}
}
EchoInHandler1
package com.aguicode.practice.netty.mutilhandler;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
/**
* @author aguicode
* @since 2020-3-8
*/
public class EchoInHandler1 extends ChannelInboundHandlerAdapter {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg)
throws Exception {
System.out.println("in1");
// 通知执行下一个InboundHandler
ctx.fireChannelRead(msg);
//ctx.writeAndFlush(msg);
}
@Override
public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
System.out.println("Complete1");
//ctx.flush();//刷新后才将数据发出到SocketChannel
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause)
throws Exception {
cause.printStackTrace();
ctx.close();
}
}
EchoInHandler2
package com.aguicode.practice.netty.mutilhandler;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import java.util.Date;
/**
* @author aguicode
* @since 2020-3-8
*/
public class EchoInHandler2 extends ChannelInboundHandlerAdapter {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg)
throws Exception {
System.out.println("in2");
ByteBuf buf = (ByteBuf) msg;
byte[] req = new byte[buf.readableBytes()];
buf.readBytes(req);
String body = new String(req, "UTF-8");
System.out.println("接收客户端数据:" + body);
//向客户端写数据
System.out.println("server向client发送数据");
String currentTime = new Date(System.currentTimeMillis()).toString();
ByteBuf resp = Unpooled.copiedBuffer(currentTime.getBytes());
//ctx.write(resp);
ctx.writeAndFlush(resp);
}
@Override
public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
System.out.println("Complete2");
//ctx.flush();//刷新后才将数据发出到SocketChannel
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause)
throws Exception {
cause.printStackTrace();
ctx.close();
}
}
EchoOutHandler1
package com.aguicode.practice.netty.mutilhandler;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelOutboundHandlerAdapter;
import io.netty.channel.ChannelPromise;
import java.util.Date;
/**
* @author aguicode
* @since 2020-3-8
*/
public class EchoOutHandler1 extends ChannelOutboundHandlerAdapter {
@Override
// 向client发送消息
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
System.out.println("out1");
/*System.out.println(msg);*/
String response = "\nI am ok!\n";
ByteBuf encoded = ctx.alloc().buffer(4 * response.length());
encoded.writeBytes(response.getBytes());
String currentTime = new Date(System.currentTimeMillis()).toString();
ByteBuf resp = Unpooled.copiedBuffer(currentTime.getBytes());
ctx.write(resp);
ctx.writeAndFlush(encoded);
ctx.flush();
}
}
EchoOutHandler2
package com.aguicode.practice.netty.mutilhandler;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelOutboundHandlerAdapter;
import io.netty.channel.ChannelPromise;
/**
* @author aguicode
* @since 2020-3-8
*/
public class EchoOutHandler2 extends ChannelOutboundHandlerAdapter {
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
System.out.println("out2");
// 执行下一个OutboundHandler
/*System.out.println("at first..msg = "+msg);
msg = "hi newed in out2";*/
// 通知执行下一个OutboundHandler
super.write(ctx, msg, promise);
super.flush(ctx);
}
}
几个重要的概念
netty中有以下几个重要的概念,首先是server与client,它们中有channel、channelPipeline、channelHandler、channelHandlerContext、ServerBootStrap、bootStrap、channelFuture、selector、Eventloop;
关于Netty的组件中的介绍会安排到另外一篇详细解答,这里只是分析in与out boundHandler执行顺序
原理解析
channelHandler 中定义outboundhandler和inboundhandler,表示一个请求进来时通过入站inboundhandler,而内部进行一些业务的逻辑处理之后出站使用outboundhandler,
这里handler是定义在channelPipeline里边的,handler之间是一种双向链表的关系,inBound事件从head节点传播到tail节点,outBound事件从tail节点传播到head节点。
/**
* I/O Request
* via {@link Channel} or
* {@link ChannelHandlerContext}
* |
* +---------------------------------------------------+---------------+
* | ChannelPipeline | |
* | \|/ |
* | +---------------------+ +-----------+----------+ |
* | | Inbound Handler N | | Outbound Handler 1 | |
* | +----------+----------+ +-----------+----------+ |
* | /|\ | |
* | | \|/ |
* | +----------+----------+ +-----------+----------+ |
* | | Inbound Handler N-1 | | Outbound Handler 2 | |
* | +----------+----------+ +-----------+----------+ |
* | /|\ . |
* | . . |
* | ChannelHandlerContext.fireIN_EVT() ChannelHandlerContext.OUT_EVT()|
* | [ method call] [method call] |
* | . . |
* | . \|/ |
* | +----------+----------+ +-----------+----------+ |
* | | Inbound Handler 2 | | Outbound Handler M-1 | |
* | +----------+----------+ +-----------+----------+ |
* | /|\ | |
* | | \|/ |
* | +----------+----------+ +-----------+----------+ |
* | | Inbound Handler 1 | | Outbound Handler M | |
* | +----------+----------+ +-----------+----------+ |
* | /|\ | |
* +---------------+-----------------------------------+---------------+
* | \|/
* +---------------+-----------------------------------+---------------+
* | | | |
* | [ Socket.read() ] [ Socket.write() ] |
* | |
* | Netty Internal I/O Threads (Transport Implementation) |
* +-------------------------------------------------------------------+
*/
例如在建立三次握手之后,开始读数据,从head节点发起,准确来说是head的unsafe方法发起,inbound寻找下一个inbound时,调用invokeChannelActive(next),一个个递归调用,直到最后一个inBound节点—即tail节点,并且tail节点作为尾节点,会终止inbound事件的传播,读事件就结束了,
这个时候,经过一段业务逻辑的处理,就需要处理outbound事件,转而反向传播,outbound则调用的是writeAndFlush(),直到head节点,数据最终会落在head节点的unsafe.write方法。
我是分割线
执行顺序的分析
那么原理都懂了,这里就重点分析一下inboundHandler与outboundHandler添加顺序不同,带来执行顺序的问题
- inbound事件在pipeline中传输方向是head->tail,即从头到尾,而且会忽略outbound事件
invokeChannelRead(findContextInbound(MASK_CHANNEL_READ), msg);
重要的是find方法
private AbstractChannelHandlerContext findContextInbound(int mask) {
AbstractChannelHandlerContext ctx = this;
do {
ctx = ctx.next;
} while ((ctx.executionMask & mask) == 0);
return ctx;
}
或者类似这样子:
- outbound事件在pipeline传输方向正好相反,会从tail->head,即从尾到头,同时也会忽略inbound事件
final AbstractChannelHandlerContext next = findContextOutbound(flush ?
(MASK_WRITE | MASK_FLUSH) : MASK_WRITE);
重要的是find方法
private AbstractChannelHandlerContext findContextOutbound(int mask) {
AbstractChannelHandlerContext ctx = this;
do {
ctx = ctx.prev;
} while ((ctx.executionMask & mask) == 0);
return ctx;
}
或者类似这样子:
但是 需要关注的是:AbstractChannelHandlerContext ctx = this;
其实AbstractChannelHandlerContext是上下文都共享的,所以,
如果是EchoInHandler1-EchoInHandler2-EchoOutHandler1-EchoOutHandler2,那么一开始入站执行了EchoInHandler1-EchoInHandler2,因为do-while循环跳出,ctx留在了EchoInHandler2的位置,在出站的时候,在EchoInHandler2的位置反向遍历,只会遍历EchoInHandler2-EchoInHandler1,那么自然就不会去读取-EchoOutHandler1-EchoOutHandler2了。
相反,如果是EchoOutHandler1-EchoOutHandler2-EchoInHandler1-EchoInHandler2的顺序,一开始入站ctx到了EchoInHandler2的位置,反向遍历就会经过EchoInHandler2-EchoInHandler1-EchoOutHandler2-EchoOutHandler1
推荐阅读
-
Netty中inboundHandler与outboundHandler的执行顺序
-
java中静态代码块与构造方法的执行顺序判断
-
php中__destruct与register_shutdown_function执行的先后顺序问题,destruct_PHP教程
-
php中__destruct与register_shutdown_function执行的先后顺序问题,destruct
-
php中__destruct与register_shutdown_function执行的先后顺序问题
-
java中return与finally的执行顺序分析(根据字节码分析)
-
php中__destruct与register_shutdown_function执行的先后顺序问题_PHP
-
php中__destruct与register_shutdown_function执行的先后顺序问题_php技巧
-
java中静态代码块与构造方法的执行顺序判断
-
mysql 中sql语句关键字的书写顺序与执行顺序