欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Leetcode - 70 - Climbing Stairs

程序员文章站 2024-03-08 19:34:28
...

You are climbing a staircase. It takes n steps to reach the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Leetcode - 70 - Climbing Stairs

 

Solutions:

(1) Applies to a small n

Try to compose the big abstract problem by similar small problems. Here, we can find that for n >= 3, f(n) = f(n-1) + f(n-2).

Caution, n>=3 in the loop we need to cover [2, n-1] or [3, n], namely (n-2) numbers.

To be faster than the recursion, we save the previous two data and update in the loop.

C++

class Solution {
public:
    int climbStairs(int n) {
        int ways = 0;
        if (n <= 0)
            return ways;
        if (n <= 2)
            return n;
        int pre1 = 2, pre2 = 1;
        for (int i = 2; i < n; i++) {
            ways = pre1 + pre2;
            pre2 = pre1;
            pre1 = ways;
        }
        return ways;
    }
};
class Solution {
public:
    int climbStairs(int n) {
        int p = 0, q = 0, r = 1;
        for (int i = 1; i <= n; ++i) {
            p = q; 
            q = r; 
            r = p + q;
        }
        return r;
    }
};

// https://leetcode-cn.com/problems/climbing-stairs/solution/pa-lou-ti-by-leetcode-solution/

Java:

class Solution {
    public int climbStairs(int n) {
        int p = 0, q = 0, r = 1;
        for (int i = 1; i <= n; ++i) {
            p = q; 
            q = r; 
            r = p + q;
        }
        return r;
    }
}

// https://leetcode-cn.com/problems/climbing-stairs/solution/pa-lou-ti-by-leetcode-solution/

(2) Fibonacci sequence equation

Leetcode - 70 - Climbing Stairs

class Solution {
    public int climbStairs(int n) {
        double sqrt_5 = Math.sqrt(5);
        double fib_n = Math.pow((1 + sqrt_5) / 2, n + 1) - Math.pow((1 - sqrt_5) / 2,n + 1);
        return (int)(fib_n / sqrt_5);
    }
}

// https://leetcode-cn.com/problems/climbing-stairs/solution/hua-jie-suan-fa-70-pa-lou-ti-by-guanpengchn/

 

 

相关标签: algorithms