详解Java编程中线程同步以及定时启动线程的方法
使用wait()与notify()实现线程间协作
1. wait()与notify()/notifyall()
调用sleep()和yield()的时候锁并没有被释放,而调用wait()将释放锁。这样另一个任务(线程)可以获得当前对象的锁,从而进入它的synchronized方法中。可以通过notify()/notifyall(),或者时间到期,从wait()中恢复执行。
只能在同步控制方法或同步块中调用wait()、notify()和notifyall()。如果在非同步的方法里调用这些方法,在运行时会抛出illegalmonitorstateexception异常。
2.模拟单个线程对多个线程的唤醒
模拟线程之间的协作。game类有2个同步方法prepare()和go()。标志位start用于判断当前线程是否需要wait()。game类的实例首先启动所有的athele类实例,使其进入wait()状态,在一段时间后,改变标志位并notifyall()所有处于wait状态的athele线程。
game.java
package concurrency; import java.util.collection; import java.util.collections; import java.util.hashset; import java.util.iterator; import java.util.set; class athlete implements runnable { private final int id; private game game; public athlete(int id, game game) { this.id = id; this.game = game; } public boolean equals(object o) { if (!(o instanceof athlete)) return false; athlete athlete = (athlete) o; return id == athlete.id; } public string tostring() { return "athlete<" + id + ">"; } public int hashcode() { return new integer(id).hashcode(); } public void run() { try { game.prepare(this); } catch (interruptedexception e) { system.out.println(this + " quit the game"); } } } public class game implements runnable { private set<athlete> players = new hashset<athlete>(); private boolean start = false; public void addplayer(athlete one) { players.add(one); } public void removeplayer(athlete one) { players.remove(one); } public collection<athlete> getplayers() { return collections.unmodifiableset(players); } public void prepare(athlete athlete) throws interruptedexception { system.out.println(athlete + " ready!"); synchronized (this) { while (!start) wait(); if (start) system.out.println(athlete + " go!"); } } public synchronized void go() { notifyall(); } public void ready() { iterator<athlete> iter = getplayers().iterator(); while (iter.hasnext()) new thread(iter.next()).start(); } public void run() { start = false; system.out.println("ready......"); system.out.println("ready......"); system.out.println("ready......"); ready(); start = true; system.out.println("go!"); go(); } public static void main(string[] args) { game game = new game(); for (int i = 0; i < 10; i++) game.addplayer(new athlete(i, game)); new thread(game).start(); } }
结果:
ready...... ready...... ready...... athlete<0> ready! athlete<1> ready! athlete<2> ready! athlete<3> ready! athlete<4> ready! athlete<5> ready! athlete<6> ready! athlete<7> ready! athlete<8> ready! athlete<9> ready! go! athlete<9> go! athlete<8> go! athlete<7> go! athlete<6> go! athlete<5> go! athlete<4> go! athlete<3> go! athlete<2> go! athlete<1> go! athlete<0> go!
3.模拟忙等待过程
myobject类的实例是被观察者,当观察事件发生时,它会通知一个monitor类的实例(通知的方式是改变一个标志位)。而此monitor类的实例是通过忙等待来不断的检查标志位是否变化。
busywaiting.java
import java.util.concurrent.timeunit; class myobject implements runnable { private monitor monitor; public myobject(monitor monitor) { this.monitor = monitor; } public void run() { try { timeunit.seconds.sleep(3); system.out.println("i'm going."); monitor.gotmessage(); } catch (interruptedexception e) { e.printstacktrace(); } } } class monitor implements runnable { private volatile boolean go = false; public void gotmessage() throws interruptedexception { go = true; } public void watching() { while (go == false) ; system.out.println("he has gone."); } public void run() { watching(); } } public class busywaiting { public static void main(string[] args) { monitor monitor = new monitor(); myobject o = new myobject(monitor); new thread(o).start(); new thread(monitor).start(); } }
结果:
i'm going. he has gone.
4.使用wait()与notify()改写上面的例子
下面的例子通过wait()来取代忙等待机制,当收到通知消息时,notify当前monitor类线程。
wait.java
package concurrency.wait; import java.util.concurrent.timeunit; class myobject implements runnable { private monitor monitor; public myobject(monitor monitor) { this.monitor = monitor; }
定时启动线程
这里提供两种在指定时间后启动线程的方法。一是通过java.util.concurrent.delayqueue实现;二是通过java.util.concurrent.scheduledthreadpoolexecutor实现。
1. java.util.concurrent.delayqueue
类delayqueue是一个*阻塞队列,只有在延迟期满时才能从中提取元素。它接受实现delayed接口的实例作为元素。
<<interface>>delayed.java
package java.util.concurrent; import java.util.*; public interface delayed extends comparable<delayed> { long getdelay(timeunit unit); }
getdelay()返回与此对象相关的剩余延迟时间,以给定的时间单位表示。此接口的实现必须定义一个 compareto 方法,该方法提供与此接口的 getdelay 方法一致的排序。
delayqueue队列的头部是延迟期满后保存时间最长的 delayed 元素。当一个元素的getdelay(timeunit.nanoseconds) 方法返回一个小于等于 0 的值时,将发生到期。
2.设计带有时间延迟特性的队列
类delayedtasker维护一个delayqueue<delayedtask> queue,其中delayedtask实现了delayed接口,并由一个内部类定义。外部类和内部类都实现runnable接口,对于外部类来说,它的run方法是按定义的时间先后取出队列中的任务,而这些任务即内部类的实例,内部类的run方法定义每个线程具体逻辑。
这个设计的实质是定义了一个具有时间特性的线程任务列表,而且该列表可以是任意长度的。每次添加任务时指定启动时间即可。
delayedtasker.java
package com.zj.timedtask; import static java.util.concurrent.timeunit.seconds; import static java.util.concurrent.timeunit.nanoseconds; import java.util.collection; import java.util.collections; import java.util.random; import java.util.concurrent.delayqueue; import java.util.concurrent.delayed; import java.util.concurrent.executorservice; import java.util.concurrent.executors; import java.util.concurrent.timeunit; public class delayedtasker implements runnable { delayqueue<delayedtask> queue = new delayqueue<delayedtask>(); public void addtask(delayedtask e) { queue.put(e); } public void removetask() { queue.poll(); } public collection<delayedtask> getalltasks() { return collections.unmodifiablecollection(queue); } public int gettaskquantity() { return queue.size(); } public void run() { while (!queue.isempty()) try { queue.take().run(); } catch (interruptedexception e) { system.out.println("interrupted"); } system.out.println("finished delayedtask"); } public static class delayedtask implements delayed, runnable { private static int counter = 0; private final int id = counter++; private final int delta; private final long trigger; public delayedtask(int delayinseconds) { delta = delayinseconds; trigger = system.nanotime() + nanoseconds.convert(delta, seconds); } public long getdelay(timeunit unit) { return unit.convert(trigger - system.nanotime(), nanoseconds); } public int compareto(delayed arg) { delayedtask that = (delayedtask) arg; if (trigger < that.trigger) return -1; if (trigger > that.trigger) return 1; return 0; } public void run() { //run all that you want to do system.out.println(this); } public string tostring() { return "[" + delta + "s]" + "task" + id; } } public static void main(string[] args) { random rand = new random(); executorservice exec = executors.newcachedthreadpool(); delayedtasker tasker = new delayedtasker(); for (int i = 0; i < 10; i++) tasker.addtask(new delayedtask(rand.nextint(5))); exec.execute(tasker); exec.shutdown(); } }
结果:
[0s]task 1 [0s]task 2 [0s]task 3 [1s]task 6 [2s]task 5 [3s]task 8 [4s]task 0 [4s]task 4 [4s]task 7 [4s]task 9 finished delayedtask
3. java.util.concurrent.scheduledthreadpoolexecutor
该类可以另行安排在给定的延迟后运行任务(线程),或者定期(重复)执行任务。在构造子中需要知道线程池的大小。最主要的方法是:
[1] schedule
public scheduledfuture<?> schedule(runnable command, long delay,timeunit unit)
创建并执行在给定延迟后启用的一次性操作。
指定者:
-接口 scheduledexecutorservice 中的 schedule;
参数:
-command - 要执行的任务 ;
-delay - 从现在开始延迟执行的时间 ;
-unit - 延迟参数的时间单位 ;
返回:
-表示挂起任务完成的 scheduledfuture,并且其 get() 方法在完成后将返回 null。
[2] scheduleatfixedrate
public scheduledfuture<?> scheduleatfixedrate(
runnable command,long initialdelay,long period,timeunit unit)
创建并执行一个在给定初始延迟后首次启用的定期操作,后续操作具有给定的周期;也就是将在 initialdelay 后开始执行,然后在 initialdelay+period 后执行,接着在 initialdelay + 2 * period 后执行,依此类推。如果任务的任何一个执行遇到异常,则后续执行都会被取消。否则,只能通过执行程序的取消或终止方法来终止该任务。如果此任务的任何一个执行要花费比其周期更长的时间,则将推迟后续执行,但不会同时执行。
指定者:
-接口 scheduledexecutorservice 中的 scheduleatfixedrate;
参数:
-command - 要执行的任务 ;
-initialdelay - 首次执行的延迟时间 ;
-period - 连续执行之间的周期 ;
-unit - initialdelay 和 period 参数的时间单位 ;
返回:
-表示挂起任务完成的 scheduledfuture,并且其 get() 方法在取消后将抛出异常。
4.设计带有时间延迟特性的线程执行者
类scheduletasked关联一个scheduledthreadpoolexcutor,可以指定线程池的大小。通过schedule方法知道线程及延迟的时间,通过shutdown方法关闭线程池。对于具体任务(线程)的逻辑具有一定的灵活性(相比前一中设计,前一种设计必须事先定义线程的逻辑,但可以通过继承或装饰修改线程具体逻辑设计)。
scheduletasker.java
package com.zj.timedtask; import java.util.concurrent.scheduledthreadpoolexecutor; import java.util.concurrent.timeunit; public class scheduletasker { private int corepoolsize = 10; scheduledthreadpoolexecutor scheduler; public scheduletasker() { scheduler = new scheduledthreadpoolexecutor(corepoolsize); } public scheduletasker(int quantity) { corepoolsize = quantity; scheduler = new scheduledthreadpoolexecutor(corepoolsize); } public void schedule(runnable event, long delay) { scheduler.schedule(event, delay, timeunit.seconds); } public void shutdown() { scheduler.shutdown(); } public static void main(string[] args) { scheduletasker tasker = new scheduletasker(); tasker.schedule(new runnable() { public void run() { system.out.println("[1s]task 1"); } }, 1); tasker.schedule(new runnable() { public void run() { system.out.println("[2s]task 2"); } }, 2); tasker.schedule(new runnable() { public void run() { system.out.println("[4s]task 3"); } }, 4); tasker.schedule(new runnable() { public void run() { system.out.println("[10s]task 4"); } }, 10); tasker.shutdown(); } }
结果:
[1s]task 1 [2s]task 2 [4s]task 3 [10s]task 4 public void run() { try { timeunit.seconds.sleep(3); system.out.println("i'm going."); monitor.gotmessage(); } catch (interruptedexception e) { e.printstacktrace(); } } }
class monitor implements runnable { private volatile boolean go = false; public synchronized void gotmessage() throws interruptedexception { go = true; notify(); } public synchronized void watching() throws interruptedexception { while (go == false) wait(); system.out.println("he has gone."); } public void run() { try { watching(); } catch (interruptedexception e) { e.printstacktrace(); } } } public class wait { public static void main(string[] args) { monitor monitor = new monitor(); myobject o = new myobject(monitor); new thread(o).start(); new thread(monitor).start(); } }
结果:
i'm going. he has gone.