欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

ReentrantLock实现原理详解

程序员文章站 2024-03-07 17:21:03
以下是本篇文章的大纲 1 synchronized和lock     1.1 synchronized的局限性   ...

以下是本篇文章的大纲

1 synchronized和lock

    1.1 synchronized的局限性
    1.2 lock简介

2 aqs

3 lock()与unlock()实现原理

    3.1 基础知识
    3.2 内部结构
    3.3 nonfairsync
    3.3.1 lock()
    3.3.2 unlock()
    3.3.3 小结
    3.4 fairsync

4 超时机制

5 总结

1 synchronized和lock

1.1 synchronized的局限性

synchronized是java内置的关键字,它提供了一种独占的加锁方式。synchronized的获取和释放锁由jvm实现,用户不需要显示的释放锁,非常方便。然而synchronized也有一定的局限性,例如:

当线程尝试获取锁的时候,如果获取不到锁会一直阻塞。

如果获取锁的线程进入休眠或者阻塞,除非当前线程异常,否则其他线程尝试获取锁必须一直等待。

jdk1.5之后发布,加入了doug lea实现的concurrent包。包内提供了lock类,用来提供更多扩展的加锁功能。lock弥补了synchronized的局限,提供了更加细粒度的加锁功能。

1.2 lock简介

lock api如下

void lock();
void lockinterruptibly() throws interruptedexception;
boolean trylock();
boolean trylock(long time, timeunit unit) throws interruptedexception;
void unlock();
condition newcondition();

其中最常用的就是lock和unlock操作了。因为使用lock时,需要手动的释放锁,所以需要使用try..catch来包住业务代码,并且在finally中释放锁。典型使用如下

private lock lock = new reentrantlock();
public void test(){
 lock.lock();
 try{
 dosomething();
 }catch (exception e){
 // ignored
 }finally {
 lock.unlock();
 }
}

2 aqs

abstractqueuedsynchronizer简称aqs,是一个用于构建锁和同步容器的框架。事实上concurrent包内许多类都是基于aqs构建,例如reentrantlock,semaphore,countdownlatch,reentrantreadwritelock,futuretask等。aqs解决了在实现同步容器时设计的大量细节问题。

aqs使用一个fifo的队列表示排队等待锁的线程,队列头节点称作“哨兵节点”或者“哑节点”,它不与任何线程关联。其他的节点与等待线程关联,每个节点维护一个等待状态waitstatus。如图

ReentrantLock实现原理详解

aqs中还有一个表示状态的字段state,例如reentrantlocky用它表示线程重入锁的次数,semaphore用它表示剩余的许可数量,futuretask用它表示任务的状态。对state变量值的更新都采用cas操作保证更新操作的原子性。

abstractqueuedsynchronizer继承了abstractownablesynchronizer,这个类只有一个变量:exclusiveownerthread,表示当前占用该锁的线程,并且提供了相应的get,set方法。

理解aqs可以帮助我们更好的理解jcu包中的同步容器。

3 lock()与unlock()实现原理

3.1 基础知识

reentrantlock是lock的默认实现之一。那么lock()和unlock()是怎么实现的呢?首先我们要弄清楚几个概念

可重入锁。可重入锁是指同一个线程可以多次获取同一把锁。reentrantlock和synchronized都是可重入锁。

可中断锁。可中断锁是指线程尝试获取锁的过程中,是否可以响应中断。synchronized是不可中断锁,而reentrantlock则提供了中断功能。

公平锁与非公平锁。公平锁是指多个线程同时尝试获取同一把锁时,获取锁的顺序按照线程达到的顺序,而非公平锁则允许线程“插队”。synchronized是非公平锁,而reentrantlock的默认实现是非公平锁,但是也可以设置为公平锁。

cas操作(compareandswap)。cas操作简单的说就是比较并交换。cas 操作包含三个操作数 —— 内存位置(v)、预期原值(a)和新值(b)。如果内存位置的值与预期原值相匹配,那么处理器会自动将该位置值更新为新值。否则,处理器不做任何操作。无论哪种情况,它都会在 cas 指令之前返回该位置的值。cas 有效地说明了“我认为位置 v 应该包含值 a;如果包含该值,则将 b 放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可。” java并发包(java.util.concurrent)中大量使用了cas操作,涉及到并发的地方都调用了sun.misc.unsafe类方法进行cas操作。

3.2 内部结构

reentrantlock提供了两个构造器,分别是

public reentrantlock() {
 sync = new nonfairsync();
}
public reentrantlock(boolean fair) {
 sync = fair ? new fairsync() : new nonfairsync();
}

默认构造器初始化为nonfairsync对象,即非公平锁,而带参数的构造器可以指定使用公平锁和非公平锁。由lock()和unlock的源码可以看到,它们只是分别调用了sync对象的lock()和release(1)方法。

sync是reentrantlock的内部类,它的结构如下

ReentrantLock实现原理详解

可以看到sync扩展了abstractqueuedsynchronizer。

3.3 nonfairsync

我们从源代码出发,分析非公平锁获取锁和释放锁的过程。

3.3.1 lock()

lock()源码如下

final void lock() {
 if (compareandsetstate(0, 1))
 setexclusiveownerthread(thread.currentthread());
 else
 acquire(1);
}

首先用一个cas操作,判断state是否是0(表示当前锁未被占用),如果是0则把它置为1,并且设置当前线程为该锁的独占线程,表示获取锁成功。当多个线程同时尝试占用同一个锁时,cas操作只能保证一个线程操作成功,剩下的只能乖乖的去排队啦。

“非公平”即体现在这里,如果占用锁的线程刚释放锁,state置为0,而排队等待锁的线程还未唤醒时,新来的线程就直接抢占了该锁,那么就“插队”了。

若当前有三个线程去竞争锁,假设线程a的cas操作成功了,拿到了锁开开心心的返回了,那么线程b和c则设置state失败,走到了else里面。我们往下看acquire。

acquire(arg)

public final void acquire(int arg) {
 if (!tryacquire(arg) &&
 acquirequeued(addwaiter(node.exclusive), arg))
 selfinterrupt();
}

代码非常简洁,但是背后的逻辑却非常复杂,可见doug lea大神的编程功力。

1. 第一步。尝试去获取锁。如果尝试获取锁成功,方法直接返回。

tryacquire(arg)

final boolean nonfairtryacquire(int acquires) {
 //获取当前线程
 final thread current = thread.currentthread();
 //获取state变量值
 int c = getstate();
 if (c == 0) { //没有线程占用锁
 if (compareandsetstate(0, acquires)) {
 //占用锁成功,设置独占线程为当前线程
 setexclusiveownerthread(current);
 return true;
 }
 } else if (current == getexclusiveownerthread()) { //当前线程已经占用该锁
 int nextc = c + acquires;
 if (nextc < 0) // overflow
 throw new error("maximum lock count exceeded");
 // 更新state值为新的重入次数
 setstate(nextc);
 return true;
 }
 //获取锁失败
 return false;
}

非公平锁tryacquire的流程是:检查state字段,若为0,表示锁未被占用,那么尝试占用,若不为0,检查当前锁是否被自己占用,若被自己占用,则更新state字段,表示重入锁的次数。如果以上两点都没有成功,则获取锁失败,返回false。

2. 第二步,入队。由于上文中提到线程a已经占用了锁,所以b和c执行tryacquire失败,并且入等待队列。如果线程a拿着锁死死不放,那么b和c就会被挂起。

先看下入队的过程。

先看addwaiter(node.exclusive)

/**
 * 将新节点和当前线程关联并且入队列
 * @param mode 独占/共享
 * @return 新节点
 */
private node addwaiter(node mode) {
 //初始化节点,设置关联线程和模式(独占 or 共享)
 node node = new node(thread.currentthread(), mode);
 // 获取尾节点引用
 node pred = tail;
 // 尾节点不为空,说明队列已经初始化过
 if (pred != null) {
 node.prev = pred;
 // 设置新节点为尾节点
 if (compareandsettail(pred, node)) {
 pred.next = node;
 return node;
 }
 }
 // 尾节点为空,说明队列还未初始化,需要初始化head节点并入队新节点
 enq(node);
 return node;
}

b、c线程同时尝试入队列,由于队列尚未初始化,tail==null,故至少会有一个线程会走到enq(node)。我们假设同时走到了enq(node)里。

/**
 * 初始化队列并且入队新节点
 */
private node enq(final node node) {
 //开始自旋
 for (;;) {
 node t = tail;
 if (t == null) { // must initialize
 // 如果tail为空,则新建一个head节点,并且tail指向head
 if (compareandsethead(new node()))
 tail = head;
 } else {
 node.prev = t;
 // tail不为空,将新节点入队
 if (compareandsettail(t, node)) {
 t.next = node;
 return t;
 }
 }
 }
}

这里体现了经典的自旋+cas组合来实现非阻塞的原子操作。由于compareandsethead的实现使用了unsafe类提供的cas操作,所以只有一个线程会创建head节点成功。假设线程b成功,之后b、c开始第二轮循环,此时tail已经不为空,两个线程都走到else里面。假设b线程compareandsettail成功,那么b就可以返回了,c由于入队失败还需要第三轮循环。最终所有线程都可以成功入队。

当b、c入等待队列后,此时aqs队列如下:

ReentrantLock实现原理详解

3. 第三步,挂起。b和c相继执行acquirequeued(final node node, int arg)。这个方法让已经入队的线程尝试获取锁,若失败则会被挂起。

/**
 * 已经入队的线程尝试获取锁
 */
final boolean acquirequeued(final node node, int arg) {
 boolean failed = true; //标记是否成功获取锁
 try {
 boolean interrupted = false; //标记线程是否被中断过
 for (;;) {
 final node p = node.predecessor(); //获取前驱节点
 //如果前驱是head,即该结点已成老二,那么便有资格去尝试获取锁
 if (p == head && tryacquire(arg)) {
 sethead(node); // 获取成功,将当前节点设置为head节点
 p.next = null; // 原head节点出队,在某个时间点被gc回收
 failed = false; //获取成功
 return interrupted; //返回是否被中断过
 }
 // 判断获取失败后是否可以挂起,若可以则挂起
 if (shouldparkafterfailedacquire(p, node) &&
  parkandcheckinterrupt())
 // 线程若被中断,设置interrupted为true
 interrupted = true;
 }
 } finally {
 if (failed)
 cancelacquire(node);
 }
}

code里的注释已经很清晰的说明了acquirequeued的执行流程。假设b和c在竞争锁的过程中a一直持有锁,那么它们的tryacquire操作都会失败,因此会走到第2个if语句中。我们再看下shouldparkafterfailedacquire和parkandcheckinterrupt都做了哪些事吧。

/**
 * 判断当前线程获取锁失败之后是否需要挂起.
 */
private static boolean shouldparkafterfailedacquire(node pred, node node) {
 //前驱节点的状态
 int ws = pred.waitstatus;
 if (ws == node.signal)
 // 前驱节点状态为signal,返回true
 return true;
 // 前驱节点状态为cancelled
 if (ws > 0) {
 // 从队尾向前寻找第一个状态不为cancelled的节点
 do {
 node.prev = pred = pred.prev;
 } while (pred.waitstatus > 0);
 pred.next = node;
 } else {
 // 将前驱节点的状态设置为signal
 compareandsetwaitstatus(pred, ws, node.signal);
 }
 return false;
} 
/**
 * 挂起当前线程,返回线程中断状态并重置
 */
private final boolean parkandcheckinterrupt() {
 locksupport.park(this);
 return thread.interrupted();
}

线程入队后能够挂起的前提是,它的前驱节点的状态为signal,它的含义是“hi,前面的兄弟,如果你获取锁并且出队后,记得把我唤醒!”。所以shouldparkafterfailedacquire会先判断当前节点的前驱是否状态符合要求,若符合则返回true,然后调用parkandcheckinterrupt,将自己挂起。如果不符合,再看前驱节点是否>0(cancelled),若是那么向前遍历直到找到第一个符合要求的前驱,若不是则将前驱节点的状态设置为signal。

整个流程中,如果前驱结点的状态不是signal,那么自己就不能安心挂起,需要去找个安心的挂起点,同时可以再尝试下看有没有机会去尝试竞争锁。

最终队列可能会如下图所示

ReentrantLock实现原理详解

线程b和c都已经入队,并且都被挂起。当线程a释放锁的时候,就会去唤醒线程b去获取锁啦。

3.3.2 unlock()

unlock相对于lock就简单很多。源码如下

public void unlock() {
 sync.release(1);
} 
public final boolean release(int arg) {
 if (tryrelease(arg)) {
 node h = head;
 if (h != null && h.waitstatus != 0)
 unparksuccessor(h);
 return true;
 }
 return false;
}

如果理解了加锁的过程,那么解锁看起来就容易多了。流程大致为先尝试释放锁,若释放成功,那么查看头结点的状态是否为signal,如果是则唤醒头结点的下个节点关联的线程,如果释放失败那么返回false表示解锁失败。这里我们也发现了,每次都只唤起头结点的下一个节点关联的线程。

最后我们再看下tryrelease的执行过程

/**
 * 释放当前线程占用的锁
 * @param releases
 * @return 是否释放成功
 */
protected final boolean tryrelease(int releases) {
 // 计算释放后state值
 int c = getstate() - releases;
 // 如果不是当前线程占用锁,那么抛出异常
 if (thread.currentthread() != getexclusiveownerthread())
 throw new illegalmonitorstateexception();
 boolean free = false;
 if (c == 0) {
 // 锁被重入次数为0,表示释放成功
 free = true;
 // 清空独占线程
 setexclusiveownerthread(null);
 }
 // 更新state值
 setstate(c);
 return free;
}

这里入参为1。tryrelease的过程为:当前释放锁的线程若不持有锁,则抛出异常。若持有锁,计算释放后的state值是否为0,若为0表示锁已经被成功释放,并且则清空独占线程,最后更新state值,返回free。

3.3.3 小结

用一张流程图总结一下非公平锁的获取锁的过程。   

ReentrantLock实现原理详解

3.4 fairsync

公平锁和非公平锁不同之处在于,公平锁在获取锁的时候,不会先去检查state状态,而是直接执行aqcuire(1),这里不再赘述。   

4 超时机制

在reetrantlock的trylock(long timeout, timeunit unit) 提供了超时获取锁的功能。它的语义是在指定的时间内如果获取到锁就返回true,获取不到则返回false。这种机制避免了线程无限期的等待锁释放。那么超时的功能是怎么实现的呢?我们还是用非公平锁为例来一探究竟。

public boolean trylock(long timeout, timeunit unit)
 throws interruptedexception {
 return sync.tryacquirenanos(1, unit.tonanos(timeout));
}

还是调用了内部类里面的方法。我们继续向前探究

 public final boolean tryacquirenanos(int arg, long nanostimeout)
 throws interruptedexception {
 if (thread.interrupted())
 throw new interruptedexception();
 return tryacquire(arg) ||
 doacquirenanos(arg, nanostimeout);
}

这里的语义是:如果线程被中断了,那么直接抛出interruptedexception。如果未中断,先尝试获取锁,获取成功就直接返回,获取失败则进入doacquirenanos。tryacquire我们已经看过,这里重点看一下doacquirenanos做了什么。

/**
 * 在有限的时间内去竞争锁
 * @return 是否获取成功
 */
private boolean doacquirenanos(int arg, long nanostimeout)
 throws interruptedexception {
 // 起始时间
 long lasttime = system.nanotime();
 // 线程入队
 final node node = addwaiter(node.exclusive);
 boolean failed = true;
 try {
 // 又是自旋!
 for (;;) {
 // 获取前驱节点
 final node p = node.predecessor();
 // 如果前驱是头节点并且占用锁成功,则将当前节点变成头结点
 if (p == head && tryacquire(arg)) {
 sethead(node);
 p.next = null; // help gc
 failed = false;
 return true;
 }
 // 如果已经超时,返回false
 if (nanostimeout <= 0)
 return false;
 // 超时时间未到,且需要挂起
 if (shouldparkafterfailedacquire(p, node) &&
  nanostimeout > spinfortimeoutthreshold)
 // 阻塞当前线程直到超时时间到期
 locksupport.parknanos(this, nanostimeout);
 long now = system.nanotime();
 // 更新nanostimeout
 nanostimeout -= now - lasttime;
 lasttime = now;
 if (thread.interrupted())
 //相应中断
 throw new interruptedexception();
 }
 } finally {
 if (failed)
 cancelacquire(node);
 }
}

doacquirenanos的流程简述为:线程先入等待队列,然后开始自旋,尝试获取锁,获取成功就返回,失败则在队列里找一个安全点把自己挂起直到超时时间过期。这里为什么还需要循环呢?因为当前线程节点的前驱状态可能不是signal,那么在当前这一轮循环中线程不会被挂起,然后更新超时时间,开始新一轮的尝试

5 总结

reentrantlock的核心功能讲解差不多落下帷幕,理解aqs,就很容易理解reentrantlock的实现原理。文中惨杂着笔者的个人理解,如有不正之处,还望指正。

 以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持!