巧夺天工的kfifo:Linux Kernel中的无锁环形缓冲讲解 博客分类: C/C++AlgorithmLinux LinuxKernellock-free
原文:CSDN博主-海枫
http://blog.csdn.net/linyt/article/details/5764312
Linux kernel里面从来就不缺少简洁,优雅和高效的代码,只是我们缺少发现和品味的眼光。在Linux kernel里面,简洁并不表示代码使用神出鬼没的超然技巧,相反,它使用的不过是大家非常熟悉的基础数据结构,但是kernel开发者能从基础的数据结构中,提炼出优美的特性。
kfifo就是这样的一类优美代码,它十分简洁,绝无多余的一行代码,却非常高效。关于kfifo信息如下:
本文分析的原代码版本:2.6.24.4
kfifo的定义文件:kernel/kfifo.c
kfifo的头文件: include/linux/kfifo.h
1. kfifo概述
kfifo是内核里面的一个First In First Out数据结构,它采用环形循环队列的数据结构来实现;它提供一个无边界的字节流服务,最重要的一点是,它使用并行无锁编程技术,即当它用于只有一个入队线程和一个出队线程的场情时,两个线程可以并发操作,而不需要任何加锁行为,就可以保证kfifo的线程安全。
kfifo代码既然肩负着这么多特性,那我们先一敝它的代码:
struct kfifo { unsigned char *buffer; /* the buffer holding the data */ unsigned int size; /* the size of the allocated buffer */ unsigned int in; /* data is added at offset (in % size) */ unsigned int out; /* data is extracted from off. (out % size) */ spinlock_t *lock; /* protects concurrent modifications */ };
这是kfifo的数据结构,kfifo主要提供了两个操作,__kfifo_put(入队操作)和__kfifo_get(出队操作)。 它的各个数据成员如下:
buffer, 用于存放数据的缓存
size, buffer空间的大小,在初化时,将它向上扩展成2的幂
lock, 如果使用不能保证任何时间最多只有一个读线程和写线程,需要使用该lock实施同步。
in, out, 和buffer一起构成一个循环队列。 in指向buffer中队头,而且out指向buffer中的队尾,它的结构如示图如下:
+--------------------------------------------------------------+
| |<----------data---------->| |
+--------------------------------------------------------------+
^ ^
| |
in out
当然,内核开发者使用了一种更好的技术处理了in, out和buffer的关系,我们将在下面进行详细的分析。
2. kfifo_alloc 分配kfifo内存和初始化工作
struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock) { unsigned char *buffer; struct kfifo *ret; /* * round up to the next power of 2, since our 'let the indices * wrap' tachnique works only in this case. */ if (size & (size - 1)) { BUG_ON(size > 0x80000000); size = roundup_pow_of_two(size); } buffer = kmalloc(size, gfp_mask); if (!buffer) return ERR_PTR(-ENOMEM); ret = kfifo_init(buffer, size, gfp_mask, lock); if (IS_ERR(ret)) kfree(buffer); return ret; }
这里值得一提的是,kfifo->size的值总是在调用者传进来的size参数的基础上向2的幂扩展,这是内核一贯的做法。这样的好处不言而喻--对kfifo->size取模运算可以转化为与运算,如下:
kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1)
在kfifo_alloc函数中,使用size & (size – 1)来判断size 是否为2幂,如果条件为真,则表示size不是2的幂,然后调用roundup_pow_of_two将之向上扩展为2的幂。 这些都是很常用的技巧,只不过大家没有将它们结合起来使用而已,下面要分析的__kfifo_put和__kfifo_get则是将kfifo->size的特点发挥到了极致。
3. __kfifo_put和__kfifo_get,巧妙的入队和出队操作,无锁并发
__kfifo_put是入队操作,它先将数据放入buffer里面,最后才修改in参数;__kfifo_get是出队操作,它先将数据从buffer中移走,最后才修改out。你会发现in和out两者各司其职。计算机科学家已经证明,当只有一个读经程和一个写线程并发操作时,不需要任何额外的锁,就可以确保是线程安全的,也即kfifo使用了无锁编程技术,以提高kernel的并发。
下面是__kfifo_put和__kfifo_get的代码
unsigned int __kfifo_put(struct kfifo *fifo, unsigned char *buffer, unsigned int len) { unsigned int l; len = min(len, fifo->size - fifo->in + fifo->out); /* * Ensure that we sample the fifo->out index -before- we * start putting bytes into the kfifo. */ smp_mb(); /* first put the data starting from fifo->in to buffer end */ l = min(len, fifo->size - (fifo->in & (fifo->size - 1))); memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l); /* then put the rest (if any) at the beginning of the buffer */ memcpy(fifo->buffer, buffer + l, len - l); /* * Ensure that we add the bytes to the kfifo -before- * we update the fifo->in index. */ smp_wmb(); fifo->in += len; return len; } unsigned int __kfifo_get(struct kfifo *fifo, unsigned char *buffer, unsigned int len) { unsigned int l; len = min(len, fifo->in - fifo->out); /* * Ensure that we sample the fifo->in index -before- we * start removing bytes from the kfifo. */ smp_rmb(); /* first get the data from fifo->out until the end of the buffer */ l = min(len, fifo->size - (fifo->out & (fifo->size - 1))); memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l); /* then get the rest (if any) from the beginning of the buffer */ memcpy(buffer + l, fifo->buffer, len - l); /* * Ensure that we remove the bytes from the kfifo -before- * we update the fifo->out index. */ smp_mb(); fifo->out += len; return len; }
认真读两遍吧,我也读了多次,每次总是有新发现,因为in, out和size的关系太巧妙了,竟然能利用上unsigned int回绕的特性。
原来,kfifo每次入队或出队,kfifo->in或kfifo->out只是简单地kfifo->in/kfifo->out += len,并没有对kfifo->size 进行取模运算。因此kfifo->in和kfifo->out总是一直增大,直到unsigned in最大值时,又会绕回到0这一起始端。但始终满足kfifo->out < kfifo->in,除非kfifo->in回绕到了0的那一端,即使如此,代码中计算长度的性质仍然是保持的。
我们先用简单的例子来形象说明这些性质吧:
+----------------------------------------+
| |<—data--->| |
+----------------------------------------+
^ ^
| |
out in
上图的out和in为kfifo->buffer的出队数据和入队数据的一下,方框为buffer的内存区域。当有数据入队时,那么in的值可能超过kfifo->size的值,那么我们使用另一个虚拟的方框来表示in变化后,在buffer内对kfifo->size取模的值。如下图如标:
真实的buffer内存 虚拟的buffer内存,方便查看in对kfifo->size取模后在buffer的下标
+----------------------------------------+ +------------------------------------+
| |<—data-------| |--------->| |
+----------------------------------------+ +------------------------------------+
^ ^
| |
out in
当用户调用__kfifo_put函数,入队的数据使kfifo的内存关系,引起上述两图的变化时,要拷贝两次内存。
因为入队数据,一部存放在kfifo->buffer的尾部,另一部分存放在kfifo->buffer的头部,计算公式非常简单。
l = kfifo->size – kfifo->in & (kfifo->size – 1) 表示in下标到buffer末尾,还有多少空间。
如果len表示需要拷贝的长度的话,那么len - l则表示有多少字节需要拷贝到buffer开始之处。
这样,我们读__kfifo_put代码就很容易了。
len = min(len, fifo->size - fifo->in + fifo->out);
fifo->in – fifo->out表示队列里面已使用的空间大小,fifo->size - (fifo->in – fifo->out)表示队列未使用的空间,
因此en = min(…),取两者之小,表示实际要拷贝的字节数。
拷贝len个字符数,fifo->in到buffer末尾所剩的空间是多少,这里面计算:
l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);
/* then put the rest (if any) at the beginning of the buffer */
memcpy(fifo->buffer, buffer + l, len - l);
l表示len或fifo->in到buffer末尾所剩的空进行间大小的最小值,因为需要拷l字节到fifo->buffer + fifo->in的位置上;那么剩下要拷贝到buffer开始之处的长度为len – l,当然,此值可能会为0,为0 时,memcpy函数不进行任何拷贝。
所有的拷贝完成后(可能是一次,也可能是两次memcpy),fifo->in 直接+= len,不需要取模运算。
写到这里,细心的读者会发现,如果fifo->in超过了unsigned int的最大值时,而回绕到0这一端,上述的计算公式还正确吗? 答案是肯定的。
因为fifo->size的大小是2的幂,而unsigned int空间的大小是2^32,后者刚好是前者的倍数。如果从上述两个图的方式来描述,则表示unsigned int空间的数轴上刚好可以划成一定数量个kfifo->size大小方框,没有长度多余。这样,fifo->in/fifo->out对fifo->size取模后,刚好落后对应的位置上。
现在假设往kfifo加入数据后,使用fifo->in < fifo->out关系,如下:
+----------------------------------------+ +------------------------------------+
|—data—>| | …… | |<--data------|
+----------------------------------------+ +------------------------------------+
|-------------------------------------------------------------------------------------------------------->|
0 0xffffffff
^ ^
| |
in out
假设kfifo中数据的长度为ldata,那么fifo->in和fifo->out有这样的关系:fifo->in = fifo->out + ldata,并且fifo->in < fifo->out。这说明fifo->in 回绕到0这一段了,尽管如此,fifo->in和fifo->out的差距还是保持的,没有变化。即fifo->in – fifo->out仍然是ldata, 那么此时的可用空间是fifo->size – ldata = fifo->size - (fifo->in – fifo->out) = fifo->size – fifo->in + fifo->out。
因此无论fifo->in和fifo->out谁大谁小,计算fifo剩余空间大小的公式fifo->size – fifo->in + fifo->out都正确,故可以保证__kfifo_put函数里面的长度计算均是正确的。
__kfifo_get函数使用fifo->in – fifo->out来计算fifo内数据的空间长度,然后再后需要出队的数据,是否需要两次拷贝。其中原理和方法都和__kfifo_put是一样的。
4. 总结
读完kfifo代码,令我想起那首诗“众里寻他千百度,默然回首,那人正在灯火阑珊处”。不知你是否和我一样,总想追求简洁,高质量和可读性的代码,当用尽各种方法,江郞才尽之时,才发现Linux kernel里面的代码就是我们寻找和学习的对象。