欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

深入分析Android系统中SparseArray的源码

程序员文章站 2024-03-05 11:49:48
前言 昨晚想在android应用中增加一个int映射到string的字典表,使用hashmap实现的时候,eclipse给出了一个警告,昨晚项目上线紧张,我直接给忽略了,...

前言
昨晚想在android应用中增加一个int映射到string的字典表,使用hashmap实现的时候,eclipse给出了一个警告,昨晚项目上线紧张,我直接给忽略了,今天看了一下具体的eclipse提示如下:

  use new sparsearray<string> (...) instead for better performance 

这个警告的意思是使用sparsearray来替代,以获取更好的性能。

源码
因为sparsearray整体代码比较简单,先把源码展示出来,然后再分析为什么使用sparsearray会比使用hashmap有更好的性能。

   

public class sparsearray<e> implements cloneable { 
    private static final object deleted = new object(); 
    private boolean mgarbage = false; 
   
    private int[] mkeys; 
    private object[] mvalues; 
    private int msize; 
   
    /** 
     * creates a new sparsearray containing no mappings. 
     */ 
    public sparsearray() { 
      this(10); 
    } 
   
    /** 
     * creates a new sparsearray containing no mappings that will not 
     * require any additional memory allocation to store the specified 
     * number of mappings. if you supply an initial capacity of 0, the 
     * sparse array will be initialized with a light-weight representation 
     * not requiring any additional array allocations. 
     */ 
    public sparsearray(int initialcapacity) { 
      if (initialcapacity == 0) { 
        mkeys = containerhelpers.empty_ints; 
        mvalues = containerhelpers.empty_objects; 
      } else { 
        initialcapacity = arrayutils.idealintarraysize(initialcapacity); 
        mkeys = new int[initialcapacity]; 
        mvalues = new object[initialcapacity]; 
      } 
      msize = 0; 
    } 
   
    @override 
    @suppresswarnings("unchecked") 
    public sparsearray<e> clone() { 
      sparsearray<e> clone = null; 
      try { 
        clone = (sparsearray<e>) super.clone(); 
        clone.mkeys = mkeys.clone(); 
        clone.mvalues = mvalues.clone(); 
      } catch (clonenotsupportedexception cnse) { 
        /* ignore */ 
      } 
      return clone; 
    } 
   
    /** 
     * gets the object mapped from the specified key, or <code>null</code> 
     * if no such mapping has been made. 
     */ 
    public e get(int key) { 
      return get(key, null); 
    } 
   
    /** 
     * gets the object mapped from the specified key, or the specified object 
     * if no such mapping has been made. 
     */ 
    @suppresswarnings("unchecked") 
    public e get(int key, e valueifkeynotfound) { 
      int i = containerhelpers.binarysearch(mkeys, msize, key); 
   
      if (i < 0 || mvalues[i] == deleted) { 
        return valueifkeynotfound; 
      } else { 
        return (e) mvalues[i]; 
      } 
    } 
   
    /** 
     * removes the mapping from the specified key, if there was any. 
     */ 
    public void delete(int key) { 
      int i = containerhelpers.binarysearch(mkeys, msize, key); 
   
      if (i >= 0) { 
        if (mvalues[i] != deleted) { 
          mvalues[i] = deleted; 
          mgarbage = true; 
        } 
      } 
    } 
   
    /** 
     * alias for {@link #delete(int)}. 
     */ 
    public void remove(int key) { 
      delete(key); 
    } 
   
    /** 
     * removes the mapping at the specified index. 
     */ 
    public void removeat(int index) { 
      if (mvalues[index] != deleted) { 
        mvalues[index] = deleted; 
        mgarbage = true; 
      } 
    } 
   
    /** 
     * remove a range of mappings as a batch. 
     * 
     * @param index index to begin at 
     * @param size number of mappings to remove 
     */ 
    public void removeatrange(int index, int size) { 
      final int end = math.min(msize, index + size); 
      for (int i = index; i < end; i++) { 
        removeat(i); 
      } 
    } 
   
    private void gc() { 
      // log.e("sparsearray", "gc start with " + msize); 
   
      int n = msize; 
      int o = 0; 
      int[] keys = mkeys; 
      object[] values = mvalues; 
   
      for (int i = 0; i < n; i++) { 
        object val = values[i]; 
   
        if (val != deleted) { 
          if (i != o) { 
            keys[o] = keys[i]; 
            values[o] = val; 
            values[i] = null; 
          } 
   
          o++; 
        } 
      } 
   
      mgarbage = false; 
      msize = o; 
   
      // log.e("sparsearray", "gc end with " + msize); 
    } 
   
    /** 
     * adds a mapping from the specified key to the specified value, 
     * replacing the previous mapping from the specified key if there 
     * was one. 
     */ 
    public void put(int key, e value) { 
      int i = containerhelpers.binarysearch(mkeys, msize, key); 
   
      if (i >= 0) { 
        mvalues[i] = value; 
      } else { 
        i = ~i; 
   
        if (i < msize && mvalues[i] == deleted) { 
          mkeys[i] = key; 
          mvalues[i] = value; 
          return; 
        } 
   
        if (mgarbage && msize >= mkeys.length) { 
          gc(); 
   
          // search again because indices may have changed. 
          i = ~containerhelpers.binarysearch(mkeys, msize, key); 
        } 
   
        if (msize >= mkeys.length) { 
          int n = arrayutils.idealintarraysize(msize + 1); 
   
          int[] nkeys = new int[n]; 
          object[] nvalues = new object[n]; 
   
          // log.e("sparsearray", "grow " + mkeys.length + " to " + n); 
          system.arraycopy(mkeys, 0, nkeys, 0, mkeys.length); 
          system.arraycopy(mvalues, 0, nvalues, 0, mvalues.length); 
   
          mkeys = nkeys; 
          mvalues = nvalues; 
        } 
   
        if (msize - i != 0) { 
          // log.e("sparsearray", "move " + (msize - i)); 
          system.arraycopy(mkeys, i, mkeys, i + 1, msize - i); 
          system.arraycopy(mvalues, i, mvalues, i + 1, msize - i); 
        } 
   
        mkeys[i] = key; 
        mvalues[i] = value; 
        msize++; 
      } 
    } 
   
    /** 
     * returns the number of key-value mappings that this sparsearray 
     * currently stores. 
     */ 
    public int size() { 
      if (mgarbage) { 
        gc(); 
      } 
   
      return msize; 
    } 
   
    /** 
     * given an index in the range <code>0...size()-1</code>, returns 
     * the key from the <code>index</code>th key-value mapping that this 
     * sparsearray stores. 
     * 
     * <p>the keys corresponding to indices in ascending order are guaranteed to 
     * be in ascending order, e.g., <code>keyat(0)</code> will return the 
     * smallest key and <code>keyat(size()-1)</code> will return the largest 
     * key.</p> 
     */ 
    public int keyat(int index) { 
      if (mgarbage) { 
        gc(); 
      } 
   
      return mkeys[index]; 
    } 
   
    /** 
     * given an index in the range <code>0...size()-1</code>, returns 
     * the value from the <code>index</code>th key-value mapping that this 
     * sparsearray stores. 
     * 
     * <p>the values corresponding to indices in ascending order are guaranteed 
     * to be associated with keys in ascending order, e.g., 
     * <code>valueat(0)</code> will return the value associated with the 
     * smallest key and <code>valueat(size()-1)</code> will return the value 
     * associated with the largest key.</p> 
     */ 
    @suppresswarnings("unchecked") 
    public e valueat(int index) { 
      if (mgarbage) { 
        gc(); 
      } 
   
      return (e) mvalues[index]; 
    } 
   
    /** 
     * given an index in the range <code>0...size()-1</code>, sets a new 
     * value for the <code>index</code>th key-value mapping that this 
     * sparsearray stores. 
     */ 
    public void setvalueat(int index, e value) { 
      if (mgarbage) { 
        gc(); 
      } 
   
      mvalues[index] = value; 
    } 
   
    /** 
     * returns the index for which {@link #keyat} would return the 
     * specified key, or a negative number if the specified 
     * key is not mapped. 
     */ 
    public int indexofkey(int key) { 
      if (mgarbage) { 
        gc(); 
      } 
   
      return containerhelpers.binarysearch(mkeys, msize, key); 
    } 
   
    /** 
     * returns an index for which {@link #valueat} would return the 
     * specified key, or a negative number if no keys map to the 
     * specified value. 
     * <p>beware that this is a linear search, unlike lookups by key, 
     * and that multiple keys can map to the same value and this will 
     * find only one of them. 
     * <p>note also that unlike most collections' {@code indexof} methods, 
     * this method compares values using {@code ==} rather than {@code equals}. 
     */ 
    public int indexofvalue(e value) { 
      if (mgarbage) { 
        gc(); 
      } 
   
      for (int i = 0; i < msize; i++) 
        if (mvalues[i] == value) 
          return i; 
   
      return -1; 
    } 
   
    /** 
     * removes all key-value mappings from this sparsearray. 
     */ 
    public void clear() { 
      int n = msize; 
      object[] values = mvalues; 
   
      for (int i = 0; i < n; i++) { 
        values[i] = null; 
      } 
   
      msize = 0; 
      mgarbage = false; 
    } 
   
    /** 
     * puts a key/value pair into the array, optimizing for the case where 
     * the key is greater than all existing keys in the array. 
     */ 
    public void append(int key, e value) { 
      if (msize != 0 && key <= mkeys[msize - 1]) { 
        put(key, value); 
        return; 
      } 
   
      if (mgarbage && msize >= mkeys.length) { 
        gc(); 
      } 
   
      int pos = msize; 
      if (pos >= mkeys.length) { 
        int n = arrayutils.idealintarraysize(pos + 1); 
   
        int[] nkeys = new int[n]; 
        object[] nvalues = new object[n]; 
   
        // log.e("sparsearray", "grow " + mkeys.length + " to " + n); 
        system.arraycopy(mkeys, 0, nkeys, 0, mkeys.length); 
        system.arraycopy(mvalues, 0, nvalues, 0, mvalues.length); 
   
        mkeys = nkeys; 
        mvalues = nvalues; 
      } 
   
      mkeys[pos] = key; 
      mvalues[pos] = value; 
      msize = pos + 1; 
    } 
   
    /** 
     * {@inheritdoc} 
     * 
     * <p>this implementation composes a string by iterating over its mappings. if 
     * this map contains itself as a value, the string "(this map)" 
     * will appear in its place. 
     */ 
    @override 
    public string tostring() { 
      if (size() <= 0) { 
        return "{}"; 
      } 
   
      stringbuilder buffer = new stringbuilder(msize * 28); 
      buffer.append('{'); 
      for (int i=0; i<msize; i++) { 
        if (i > 0) { 
          buffer.append(", "); 
        } 
        int key = keyat(i); 
        buffer.append(key); 
        buffer.append('='); 
        object value = valueat(i); 
        if (value != this) { 
          buffer.append(value); 
        } else { 
          buffer.append("(this map)"); 
        } 
      } 
      buffer.append('}'); 
      return buffer.tostring(); 
    } 
  } 


首先,看一下sparsearray的构造函数:

   

 /** 
   * creates a new sparsearray containing no mappings. 
   */ 
  public sparsearray() { 
    this(10); 
  } 
   
  /** 
   * creates a new sparsearray containing no mappings that will not 
   * require any additional memory allocation to store the specified 
   * number of mappings. if you supply an initial capacity of 0, the 
   * sparse array will be initialized with a light-weight representation 
   * not requiring any additional array allocations. 
   */ 
  public sparsearray(int initialcapacity) { 
    if (initialcapacity == 0) { 
      mkeys = containerhelpers.empty_ints; 
      mvalues = containerhelpers.empty_objects; 
    } else { 
      initialcapacity = arrayutils.idealintarraysize(initialcapacity); 
      mkeys = new int[initialcapacity]; 
      mvalues = new object[initialcapacity]; 
    } 
    msize = 0; 
  } 

从构造方法可以看出,这里也是预先设置了容器的大小,默认大小为10。

再来看一下添加数据操作:

  /** 
   * adds a mapping from the specified key to the specified value, 
   * replacing the previous mapping from the specified key if there 
   * was one. 
   */ 
  public void put(int key, e value) { 
    int i = containerhelpers.binarysearch(mkeys, msize, key); 
   
    if (i >= 0) { 
      mvalues[i] = value; 
    } else { 
      i = ~i; 
   
      if (i < msize && mvalues[i] == deleted) { 
        mkeys[i] = key; 
        mvalues[i] = value; 
        return; 
      } 
   
      if (mgarbage && msize >= mkeys.length) { 
        gc(); 
   
        // search again because indices may have changed. 
        i = ~containerhelpers.binarysearch(mkeys, msize, key); 
      } 
   
      if (msize >= mkeys.length) { 
        int n = arrayutils.idealintarraysize(msize + 1); 
   
        int[] nkeys = new int[n]; 
        object[] nvalues = new object[n]; 
   
        // log.e("sparsearray", "grow " + mkeys.length + " to " + n); 
        system.arraycopy(mkeys, 0, nkeys, 0, mkeys.length); 
        system.arraycopy(mvalues, 0, nvalues, 0, mvalues.length); 
   
        mkeys = nkeys; 
        mvalues = nvalues; 
      } 
   
      if (msize - i != 0) { 
        // log.e("sparsearray", "move " + (msize - i)); 
        system.arraycopy(mkeys, i, mkeys, i + 1, msize - i); 
        system.arraycopy(mvalues, i, mvalues, i + 1, msize - i); 
      } 
   
      mkeys[i] = key; 
      mvalues[i] = value; 
      msize++; 
    } 
  } 


再看查数据的方法:

  /** 
   * gets the object mapped from the specified key, or <code>null</code> 
   * if no such mapping has been made. 
   */ 
  public e get(int key) { 
    return get(key, null); 
  } 
   
  /** 
   * gets the object mapped from the specified key, or the specified object 
   * if no such mapping has been made. 
   */ 
  @suppresswarnings("unchecked") 
  public e get(int key, e valueifkeynotfound) { 
    int i = containerhelpers.binarysearch(mkeys, msize, key); 
   
    if (i < 0 || mvalues[i] == deleted) { 
      return valueifkeynotfound; 
    } else { 
      return (e) mvalues[i]; 
    } 
  } 


可以看到,在put数据和get数据的过程中,都统一调用了一个二分查找算法,其实这也就是sparsearray能够提升效率的核心。

   

 static int binarysearch(int[] array, int size, int value) { 
    int lo = 0; 
    int hi = size - 1; 
   
    while (lo <= hi) { 
      final int mid = (lo + hi) >>> 1; 
      final int midval = array[mid]; 
   
      if (midval < value) { 
        lo = mid + 1; 
      } else if (midval > value) { 
        hi = mid - 1; 
      } else { 
        return mid; // value found 
      } 
    } 
    return ~lo; // value not present 
  } 

个人认为(lo + hi) >>> 1的方法有些怪异,直接用 lo + (hi - lo) / 2更好一些。