Java实现八个常用的排序算法:插入排序、冒泡排序、选择排序、希尔排序等
程序员文章站
2024-03-05 10:39:48
本文实现了八个常用的排序算法:插入排序、冒泡排序、选择排序、希尔排序 、快速排序、归并排序、堆排序和lst基数排序
首先是eightalgorithms.java文件,代...
本文实现了八个常用的排序算法:插入排序、冒泡排序、选择排序、希尔排序 、快速排序、归并排序、堆排序和lst基数排序
首先是eightalgorithms.java文件,代码如下:
import java.util.arrays; /* * 实现了八个常用的排序算法:插入排序、冒泡排序、选择排序、希尔排序 * 以及快速排序、归并排序、堆排序和lst基数排序 * @author gkh178 */ public class eightalgorithms { //插入排序:时间复杂度o(n^2) public static void insertsort(int a[], int n) { for (int i = 1; i < n; ++i) { int temp = a[i]; int j = i - 1; while (j >= 0 && a[j] > temp) { a[j + 1] =a[j]; --j; } a[j + 1] = temp; } } //冒泡排序:时间复杂度o(n^2) public static void bubblesort(int a[], int n) { for (int i = n - 1; i > 0; --i) { for (int j = 0; j < i; ++j) { if (a[j] > a[j + 1]) { int temp = a[j]; a[j] = a[j + 1]; a[j + 1] = temp; } } } } //选择排序:时间复杂度o(n^2) public static void selectsort(int a[], int n) { for (int i = 0; i < n - 1; ++i) { int min = a[i]; int index = i; for (int j = i + 1; j < n; ++j) { if (a[j] < min) { min = a[j]; index = j; } } a[index] = a[i]; a[i] = min; } } //希尔排序:时间复杂度介于o(n^2)和o(nlgn)之间 public static void shellsort(int a[], int n) { for (int gap = n / 2; gap >= 1; gap /= 2) { for (int i = gap; i < n; ++i) { int temp = a[i]; int j = i -gap; while (j >= 0 && a[j] > temp) { a[j + gap] = a[j]; j -= gap; } a[j + gap] = temp; } } } //快速排序:时间复杂度o(nlgn) public static void quicksort(int a[], int n) { _quicksort(a, 0, n-1); } public static void _quicksort(int a[], int left, int right) { if (left < right) { int q = _partition(a, left, right); _quicksort(a, left, q - 1); _quicksort(a, q + 1, right); } } public static int _partition(int a[], int left, int right) { int pivot = a[left]; while (left < right) { while (left < right && a[right] >= pivot) { --right; } a[left] = a[right]; while (left <right && a[left] <= pivot) { ++left; } a[right] = a[left]; } a[left] = pivot; return left; } //归并排序:时间复杂度o(nlgn) public static void mergesort(int a[], int n) { _mergesort(a, 0 , n-1); } public static void _mergesort(int a[], int left, int right) { if (left <right) { int mid = left + (right - left) / 2; _mergesort(a, left, mid); _mergesort(a, mid + 1, right); _merge(a, left, mid, right); } } public static void _merge(int a[], int left, int mid, int right) { int length = right - left + 1; int newa[] = new int[length]; for (int i = 0, j = left; i <= length - 1; ++i, ++j) { newa[i] = a[j]; } int i = 0; int j = mid -left + 1; int k = left; for (; i <= mid - left && j <= length - 1; ++k) { if (newa[i] < newa[j]) { a[k] = newa[i++]; } else { a[k] = newa[j++]; } } while (i <= mid - left) { a[k++] = newa[i++]; } while (j <= right - left) { a[k++] = newa[j++]; } } //堆排序:时间复杂度o(nlgn) public static void heapsort(int a[], int n) { builtmaxheap(a, n);//建立初始大根堆 //交换首尾元素,并对交换后排除尾元素的数组进行一次上调整 for (int i = n - 1; i >= 1; --i) { int temp = a[0]; a[0] = a[i]; a[i] = temp; upadjust(a, i); } } //建立一个长度为n的大根堆 public static void builtmaxheap(int a[], int n) { upadjust(a, n); } //对长度为n的数组进行一次上调整 public static void upadjust(int a[], int n) { //对每个带有子女节点的元素遍历处理,从后到根节点位置 for (int i = n / 2; i >= 1; --i) { adjustnode(a, n, i); } } //调整序号为i的节点的值 public static void adjustnode(int a[], int n, int i) { //节点有左右孩子 if (2 * i + 1 <= n) { //右孩子的值大于节点的值,交换它们 if (a[2 * i] > a[i - 1]) { int temp = a[2 * i]; a[2 * i] = a[i - 1]; a[i - 1] = temp; } //左孩子的值大于节点的值,交换它们 if (a[2 * i -1] > a[i - 1]) { int temp = a[2 * i - 1]; a[2 * i - 1] = a[i - 1]; a[i - 1] = temp; } //对节点的左右孩子的根节点进行调整 adjustnode(a, n, 2 * i); adjustnode(a, n, 2 * i + 1); } //节点只有左孩子,为最后一个有左右孩子的节点 else if (2 * i == n) { //左孩子的值大于节点的值,交换它们 if (a[2 * i -1] > a[i - 1]) { int temp = a[2 * i - 1]; a[2 * i - 1] = a[i - 1]; a[i - 1] = temp; } } } //基数排序的时间复杂度为o(distance(n+radix)),distance为位数,n为数组个数,radix为基数 //本方法是用lst方法进行基数排序,mst方法不包含在内 //其中参数radix为基数,一般为10;distance表示待排序的数组的数字最长的位数;n为数组的长度 public static void lstradixsort(int a[], int n, int radix, int distance) { int[] newa = new int[n];//用于暂存数组 int[] count = new int[radix];//用于计数排序,保存的是当前位的值为0 到 radix-1的元素出现的的个数 int divide = 1; //从倒数第一位处理到第一位 for (int i = 0; i < distance; ++i) { system.arraycopy(a, 0, newa, 0, n);//待排数组拷贝到newa数组中 arrays.fill(count, 0);//将计数数组置0 for (int j = 0; j < n; ++j) { int radixkey = (newa[j] / divide) % radix; //得到数组元素的当前处理位的值 count[radixkey]++; } //此时count[]中每个元素保存的是radixkey位出现的次数 //计算每个radixkey在数组中的结束位置,位置序号范围为1-n for (int j = 1; j < radix; ++j) { count[j] = count[j] + count[j - 1]; } //运用计数排序的原理实现一次排序,排序后的数组输出到a[] for (int j = n - 1; j >= 0; --j) { int radixkey = (newa[j] / divide) % radix; a[count[radixkey] - 1] = newa[j]; --count[radixkey]; } divide = divide * radix; } } }
然后测试代码testeightalgorithms.java,代码如下:
public class testeightalgorithms { public static void printarray(int a[], int n) { for (int i = 0; i < n; ++i) { system.out.print(a[i] + " "); if ( i == n - 1) { system.out.println(); } } } public static void main(string[] args) { for (int i = 1; i <= 8; ++i) { int arr[] = {45, 38, 26, 77, 128, 38, 25, 444, 61, 153, 9999, 1012, 43, 128}; switch(i) { case 1: eightalgorithms.insertsort(arr, arr.length); break; case 2: eightalgorithms.bubblesort(arr, arr.length); break; case 3: eightalgorithms.selectsort(arr, arr.length); break; case 4: eightalgorithms.shellsort(arr, arr.length); break; case 5: eightalgorithms.quicksort(arr, arr.length); break; case 6: eightalgorithms.mergesort(arr, arr.length); break; case 7: eightalgorithms.heapsort(arr, arr.length); break; case 8: eightalgorithms.lstradixsort(arr, arr.length, 10, 4); break; default: break; } printarray(arr, arr.length); } } }
最后是运行结果如下:
以上就是java实现八个常用的排序算法的全部代码,希望大家对c++排序算法有更进一步的了解。
推荐阅读
-
Java实现八个常用的排序算法:插入排序、冒泡排序、选择排序、希尔排序等
-
Java 选择排序、插入排序、希尔算法实例详解
-
浅谈JAVA实现选择排序,插入排序,冒泡排序,以及两个有序数组的合并
-
Java 选择排序、插入排序、希尔算法实例详解
-
浅谈JAVA实现选择排序,插入排序,冒泡排序,以及两个有序数组的合并
-
Python实现的插入排序,冒泡排序,快速排序,选择排序算法示例
-
java 合并排序算法、冒泡排序算法、选择排序算法、插入排序算法、快速排序算法的描述
-
Python实现的插入排序,冒泡排序,快速排序,选择排序算法示例
-
JAVA实现选择排序,插入排序,冒泡排序,以及两个有序数组的合并
-
PHP四种排序算法实现及效率分析【冒泡排序,插入排序,选择排序和快速排序】