欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

itchat和matplotlib的结合使用爬取微信信息的实例

程序员文章站 2024-03-04 19:43:12
前几天无意中看到了一片文章,《用 Python 爬了爬自己的微信朋友(实例讲解)》,这篇文章写的是使用python中的itchat爬取微信中朋友的信息,其中信息包括,昵称、...

前几天无意中看到了一片文章,《用 Python 爬了爬自己的微信朋友(实例讲解)》,这篇文章写的是使用python中的itchat爬取微信中朋友的信息,其中信息包括,昵称、性别、地理位置等,然后对这些信息进行统计并且以图像形式显示。文章对itchat的使用写的很详细,但是代码是贴图,画图使用R中的包画,我对着做了一遍,并且把他没有贴画图的代码做了一遍,画图是使用matplotlib。由于他没有贴代码,所以我把我写的贴出来供以后复制。

首先是安装itchat的包,可以使用清华大学的镜像:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple itchat

爬取微信好友男女比例:

import itchat
 
itchat.login()
friends=itchat.get_friends(update=True)[0:]
male=female=other=0
for i in friends[1:]:
 sex=i['Sex']
 if sex==1:
  male+=1
 elif sex==2:
  female+=1
 else:
  other+=1
   
total=len(friends[1:])
malecol=round(float(male)/total*100,2)
femalecol=round(float(female)/total*100,2)
othercol=round(float(other)/total*100,2)
print('男性朋友:%.2f%%' %(malecol)+'\n'+
'女性朋友:%.2f%%' % (femalecol)+'\n'+
'性别不明的好友:%.2f%%' %(othercol))
print("显示图如下:")

 画图:柱状图和饼状图,图片如下:

itchat和matplotlib的结合使用爬取微信信息的实例itchat和matplotlib的结合使用爬取微信信息的实例

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
#解决中文乱码不显示问题
mpl.rcParams['font.sans-serif'] = ['SimHei'] #指定默认字体 
mpl.rcParams['axes.unicode_minus'] = False #解决保存图像是负号'-'显示为方块的问题 
 
map = {
 'Female': (malecol, '#7199cf'),
 'Male': (femalecol, '#4fc4aa'),
 'other': (othercol, '#e1a7a2')
}
 
fig = plt.figure(figsize=(5,5))# 整体图的标题
ax = fig.add_subplot(111)#添加一个子图
ax.set_title('Gender of friends')
 
xticks = np.arange(3)+0.15# 生成x轴每个元素的位置
bar_width = 0.5# 定义柱状图每个柱的宽度
names = map.keys()#获得x轴的值
values = [x[0] for x in map.values()]# y轴的值
colors = [x[1] for x in map.values()]# 对应颜色
 
bars = ax.bar(xticks, values, width=bar_width, edgecolor='none')# 画柱状图,横轴是x的位置,纵轴是y,定义柱的宽度,同时设置柱的边缘为透明
ax.set_ylabel('Proprotion')# 设置标题
ax.set_xlabel('Gender')
ax.grid()#打开网格
ax.set_xticks(xticks)# x轴每个标签的具体位置
ax.set_xticklabels(names)# 设置每个标签的名字
ax.set_xlim([bar_width/2-0.5, 3-bar_width/2])# 设置x轴的范围
ax.set_ylim([0, 100])# 设置y轴的范围
for bar, color in zip(bars, colors):
 bar.set_color(color)# 给每个bar分配指定的颜色
 height=bar.get_height()#获得高度并且让字居上一点
 plt.text(bar.get_x()+bar.get_width()/4.,height,'%.2f%%' %float(height))#写值
plt.show()
#画饼状图
fig1 = plt.figure(figsize=(5,5))# 整体图的标题
ax = fig1.add_subplot(111)
ax.set_title('Pie chart')
labels = ['{}\n{} %'.format(name, value) for name, value in zip(names, values)]
ax.pie(values, labels=labels, colors=colors)#并指定标签和对应颜色
plt.show()

爬取其他信息,对省份分类并根据个数对其排序

#用来爬去各个变量
def get_var(var):
 variable=[]
 for i in friends:
  value=i[var]
  variable.append(value)
 return variable
 
#调用函数得到各个变量,并把数据存到csv文件中,保存到桌面
NickName=get_var('NickName')
Sex=get_var('Sex')
Province=get_var('Province')
City=get_var('City')
Signature=get_var('Signature')
 
pros=set(Province)#去重
prosarray=[]
for item in pros:
 prosarray.append((item,Province.count(item)))#获取个数
def by_num(p):
 return p[1]
prosdsored=sorted(prosarray,key=by_num,reverse=True)#根据个数排序

画省份图:

itchat和matplotlib的结合使用爬取微信信息的实例

#画图
figpro = plt.figure(figsize=(10,5))# 整体图的标题
axpro = figpro.add_subplot(111)#添加一个子图
axpro.set_title('Province')
xticks = np.linspace(0.5,20,20)# 生成x轴每个元素的位置
bar_width = 0.8# 定义柱状图每个柱的宽度
pros=[]
values = []
count=0
for item in prosdsored:
 pros.append(item[0])
 values.append(item[1])
 count=count+1
 if count>=20:
  break
 
colors = ['#FFEC8B','#FFE4C4','#FFC125','#FFB6C1','#CDCDB4','#CDC8B1','#CDB79E','#CDAD00','#CD96CD','#CD853F','#C1FFC1','#C0FF3E','#BEBEBE','#CD5C5C','#CD3700','#CD2626','#8B8970','#8B6914','#8B5F65','#8B2252']# 对应颜色
 
bars = axpro.bar(xticks, values, width=bar_width, edgecolor='none')
axpro.set_ylabel('人数')# 设置标题
axpro.set_xlabel('省份')
axpro.grid()#打开网格
axpro.set_xticks(xticks)# x轴每个标签的具体位置
axpro.set_xticklabels(pros)# 设置每个标签的名字
axpro.set_xlim(0,20)# 设置x轴的范围
axpro.set_ylim([0, 100])# 设置y轴的范围
 
for bar, color in zip(bars, colors):
 bar.set_color(color)# 给每个bar分配指定的颜色
 height=bar.get_height()#获得高度并且让字居上一点
 plt.text(bar.get_x()+bar.get_width()/4.,height,'%.d' %float(height))#写值
 
plt.show()

还可以对数据进行保存:可用excel打开

#保存数据
from pandas import DataFrame
data={'NickName':NickName,'Sex':Sex,'Province':Province,'City':City,'Signature':Signature}
frame=DataFrame(data)
 
frame.to_csv('data.csv',index=True)

以上这篇itchat和matplotlib的结合使用爬取微信信息的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。