欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python实现的概率分布运算操作示例

程序员文章站 2024-03-04 19:03:42
本文实例讲述了Python实现的概率分布运算操作。分享给大家供大家参考,具体如下: 1. 二项分布(离散) import numpy as np from s...

本文实例讲述了Python实现的概率分布运算操作。分享给大家供大家参考,具体如下:

1. 二项分布(离散)

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
'''
# 二项分布 (binomial distribution)
# 前提:独立重复试验、有放回、只有两个结果
# 二项分布指出,随机一次试验出现事件A的概率如果为p,那么在重复n次试验中出现k次事件A的概率为:
# f(n,k,p) = choose(n, k) * p**k * (1-p)**(n-k)
'''
# ①定义二项分布的基本信息
p = 0.4 # 事件A概率0.4
n = 5  # 重复实验5次
k = np.arange(n+1) # 6种可能出现的结果
#k = np.linspace(stats.binom.ppf(0.01,n,p), stats.binom.ppf(0.99,n,p), n+1) #另一种方式
# ②计算二项分布的概率质量分布 (probability mass function)
# 之所以称为质量,是因为离散的点,默认体积(即宽度)为1
# P(X=x) --> 是概率
probs = stats.binom.pmf(k, n, p)
#array([ 0.07776, 0.2592 , 0.3456 , 0.2304 , 0.0768 , 0.01024])
#plt.plot(k, probs)
# ③计算二项分布的累积概率 (cumulative density function)
# P(X<=x) --> 也是概率
cumsum_probs = stats.binom.cdf(k, n, p)
#array([ 0.07776, 0.33696, 0.68256, 0.91296, 0.98976, 1.   ])
# ④根据累积概率得到对应的k,这里偷懒,直接用了上面的cumsum_probs
k2 = stats.binom.ppf(cumsum_probs, n, p)
#array([0, 1, 2, 3, 4, 5])
# ⑤伪造符合二项分布的随机变量 (random variates)
X = stats.binom.rvs(n,p,size=20)
#array([2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 3, 0, 1, 1, 1, 2, 3, 4, 0, 3])
#⑧作出上面满足二项分布随机变量的频数直方图(类似group by)
plt.hist(X)
#⑨作出上面满足二项分布随机变量的频率分布直方图
plt.hist(X, normed=True)
plt.show()

2. 正态分布(连续)

'''
标准正态分布
密度函数:f(x) = exp(-x**2/2)/sqrt(2*pi)
'''
x = np.linspace(stats.norm.ppf(0.01), stats.norm.ppf(0.99), 100)
# 概率密度分布函数(Probability density function)
# 之所以称为密度,是因为连续的点,默认体积为0
# f(x) --> 不是概率
probs = norm.pdf(x)
# plt.plot(x, probs, 'r-', lw=5, alpha=0.6, label='norm pdf')
# 累积概率密度函数 Cumulative density function
# 定积分 ∫_-oo^a f(x)dx --> 是概率
cumsum_probs = stats.norm.cdf(x)
# 伪造符合正态分布的随机变量X
# 通过loc和scale参数可以指定随机变量的偏移和缩放参数。对于正态分布的随机变量来说,这两个参数相当于指定其期望值和标准差:
X = stats.norm.rvs(loc=1.0, scale=2.0, size=1000)
#⑨作出上面正态分布随机变量的频率分布直方图
plt.hist(X, normed=True, histtype='stepfilled', alpha=0.2)
plt.legend(loc='best', frameon=False)
plt.show()
# 对给定的数据进行参数估计。这里偷懒了,就用上面的X
mean, std = stats.norm.fit(X)
#array(1.01810091), array(2.00046946)

附:NumPy、SciPy与MatPlotLib模块下载地址:

NumPy: http://sourceforge.net/projects/numpy/files/NumPy/1.9.2/
SciPy: http://sourceforge.net/projects/scipy/files/scipy/0.15.1/
MatPlotLib: http://matplotlib.org/downloads.html

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。