欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Weighted PageRank算法实现 博客分类: 小技术  

程序员文章站 2024-03-03 23:01:58
...

PageRank里面的边是没有权重的,就是说每一个点对另一个点的影响都是一样的,但是会有一些情况,一个点对另一个点的影响大小不一致,这就需 要用到了给边加权重的方法,这就有了Weighted PageRank这个算法。WPR算法的理论资料相对于PR算法会少很多的,可以在Google scholar 上找到这篇论文 Weighted PageRank Algorithm . ,还可以到一些学校的网站找到这个算法的讲解,就差不多了。

我的实现方法是,先构建一个没有权重的关系矩阵,然后根据已经获得的矩阵,和WPR的权重出度和入读的方法计算出权重矩阵,然后有WPR的算法实现。实现的只是一个简单的实例,具体到实际的数据时还需要做修改。

代码如下:

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;

public class WeightPageRank {
       private static int count;            //矩阵的维数
       static int[][] matrix;        //二维数组,构造关系矩阵
       static double[][] weightMatrix; //二维数组,边的权重矩阵
       static double[] outLinks;      //每个点的出链接数
       static double[] inLinks;      //每个点的入链接数
       static double[] pageRank;   //PageRank值
       static double d = 0.85;        //抑制因素,设为0.85
       boolean flag = true;        //控制循环,收敛后则为false,停止计算
       
       /**
        * 构造函数
        * @param count  //矩阵的维数
        */
       public WeightPageRank(int count)
       {
           this.count = count;
           pageRank = new double[count];
           for(int i = 0; i < count; i++)
               pageRank[i] = 1/count;           //将每个页面的初始PR值设为1
       }
       
       
       /**
        * 初始化矩阵
        * @throws IOException
        */
       public void InitialMatrix() throws IOException
       {
           matrix = new int[count][count];               //关系矩阵
           File file = new File("graph.txt"); //读取文件中的关系信息
           FileReader fr;
           BufferedReader br;
           if(file.exists())            //文件存在
           {
                fr = new FileReader(file);
                br = new BufferedReader(fr);  //读取文件信息
                int i;
                while(br.ready())
                {
                    String[] words = new String[20];
                    String[] fromNodes = new String[20];  //起始点
                    String[] toNodes = new String[20];    //指向的点
                    words = br.readLine().split("-");
                    fromNodes[0] = words[0];
                    toNodes = words[1].split(",");
                    int row = 0;
                    for(i = 0;i < toNodes.length;i++)
                    {
                        int column = 0;
                        //System.out.println(fromNodes[0]+toNodes[i]);
                        switch(fromNodes[0].charAt(0))
                        {
                        case 'A': row = 0;break;
                        case 'B': row = 1;break;
                        case 'C': row = 2;break;
                        case 'D': row = 3;break;
                        case 'E': row = 4;break;
                        case 'F': row = 5;break;
                        case 'G': row = 6;break;
                        case 'H': row = 7;break;
                        case 'I': row = 8;break;
                        default : row = 0;break;
                        }
                        switch(toNodes[i].charAt(0))
                        {
                        case 'A': column = 0;break;
                        case 'B': column = 1;break;
                        case 'C': column = 2;break;
                        case 'D': column = 3;break;
                        case 'E': column = 4;break;
                        case 'F': column = 5;break;
                        case 'G': column = 6;break;
                        case 'H': column = 7;break;
                        case 'I': column = 8;break;
                        default : column = 0;break;
                        }  
                        matrix[row][column] = 1;      //将有边的两点赋值为1
                        //System.out.println(matrix[row][column]);
                    }
                   
                }
           }
           else            //文件存在
           {
               System.out.println("文件不存在!");
               System.exit(0);
           }
       }
       
       /**
        * 计算每个点的入链接数
        * 即,计算矩阵中每一列的和
        */
       public void inLinks()
       {
           inLinks = new double[count];
           for(int i = 0;i < count; i++)
           {
               for(int j = 0; j < count; j++)
               {
                   inLinks[i] += matrix[j][i];
               }
               //System.out.println(inLinks[i]);
           }
       }
       /**
        *
        * 计算每一个点的链出数
        * 即,计算矩阵中的每一行的和
        */
       public void outLinks()
       {
           outLinks = new double[count];
           for(int i = 0;i < count; i++)
           {
               for(int j = 0; j < count; j++)
               {
                   outLinks[i] += matrix[i][j];
               }
               //System.out.println(outLinks[i]);
           }
       }
       
       /**
        * 构建权重矩阵,根据关系矩阵,有边则计算该边的权重
        * 由入度权重和出度权重相乘得到
        * 入度权重计算方法为:(i,j)边的入度权重为i指向的边j的入度除以i指向的所有点的入度和
        * 出度权重计算方法为:(i,j)边的出度权重为i指向的边j的出度除以i指向的所有点的出度和
        */
       public void weightMatrix()
       {
           weightMatrix = new double[count][count];
           int[] sumIn = new int[count];
           int[] sumOut = new int[count];
           for(int i = 0;i < count;i++)
           {
               for(int j = 0; j < count; j++)
               {
                   if(matrix[i][j] == 1)               //有边,则统计起始点的所指向的点的入度和出度和
                   {
                       sumIn[i] += inLinks[j];         //统计点i指向的所有点的入度和
                       sumOut[i] += outLinks[j];       //统计点i指向的所有点的出度和
                   }
               }
           }
           
           //构建权重矩阵
           for(int i = 0;i < count;i++)
           {
               for(int j = 0; j < count; j++)
               {
                   if(matrix[i][j] == 1)               //有边,则计算该边的权重
                   {
                       weightMatrix[i][j] = (inLinks[j]/sumIn[i])*(outLinks[j]/sumOut[i]);
                       //System.out.println(weightMatrix[i][j]);
                   }
               }
           }
           
           
       }
       /**
        * 计算每一个页面PR值
        */
       public double[] CalculatePR(double[] pagerank)
       {
           double totle = 0;
           double pageRank1 = pagerank[0];           //第一个点前一次的PR值
           double pageRank2;                         //第一个点下一次的PR值,两个值用于判断是否收敛
           for(int j = 0; j < count; j++)
           {
               double sum = 0;
               for(int k = 0; k < count; k++)
               {
                   sum += weightMatrix[j][k]*pageRank[k]*matrix[k][j]/outLinks[k]; //计算各个PR总和
               }
               pageRank[j] = (1-d)/count + d*sum;                  //PR的计算
               totle += pageRank[j];
               System.out.print(pageRank[j]+":");
           }
           pageRank2 = pageRank[0];                        //下一次的PR值
           if(Math.abs(pageRank1-pageRank2) < Math.pow(10, -10))//收敛条件,两次的PR值的差的绝对值小于0.0000000001
               flag = false;
           else
               flag = true;
           
           //归一化处理
           for(int i = 0; i < count; i++)
           {
               pageRank[i] = pageRank[i]/totle;
           }
           return pageRank;
       }
       
       /**
        *
        * 迭代计算直到收敛
        *
        */
       public void CalculateResult()
       {
           double[] pageRanks = pageRank;
           int i = 0;
           while(flag)
           {
               System.out.println("第"+(i+1)+"轮迭代:");
               pageRanks = CalculatePR(pageRanks);           //循环调用计算PR值
               System.out.println();
               i++;
           }
           
           for(int j = 0; j < count; j++)
           {
               System.out.println("最终的结果为:");
               System.out.println((j+1)+"-----"+pageRanks[j]);
           }
               
       }
       
       public static void main(String[] args) throws IOException
       {
           WeightPageRank pg = new WeightPageRank(8);   //n维矩阵,有n个点
           pg.InitialMatrix();
           pg.inLinks();
           pg.outLinks();
           pg.weightMatrix();
           for(int i = 0; i < count;i++)
           {
               for(int j = 0; j < count; j++)
               {
                   System.out.print(matrix[i][j]+"  ");
               }
               System.out.println();
           }
           
           for(int i = 0; i < count;i++)
           {
               for(int j = 0; j < count; j++)
               {
                   System.out.print(weightMatrix[i][j]+"  ");
               }
               System.out.println();
           }
           
           pg.CalculateResult();
       }

}