欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Redis 数据类型之有序集

程序员文章站 2024-03-01 12:16:46
...

REDIS_ZSET (有序集)是 ZADD 、 ZCOUNT 等命令的操作对象, 它使用 REDIS_ENCODING_ZIPLIST 和 REDIS_ENCODING_SKIPLIST 两种方式编码。

在通过 ZADD 命令添加第一个元素到空 key 时, 程序通过检查输入的第一个元素来决定该创建什么编码的有序集。

如果第一个元素符合以下条件的话, 就创建一个 REDIS_ENCODING_ZIPLIST 编码的有序集:

  • 服务器属性 server.zset_max_ziplist_entries 的值大于 0 (默认为 128 )。
  • 元素的 member 长度小于服务器属性 server.zset_max_ziplist_value 的值(默认为 64 )。

否则,程序就创建一个 REDIS_ENCODING_SKIPLIST 编码的有序集。

对于一个 REDIS_ENCODING_ZIPLIST 编码的有序集, 只要满足以下任一条件, 就将它转换为 REDIS_ENCODING_SKIPLIST 编码:

  • ziplist 所保存的元素数量超过服务器属性 server.zset_max_ziplist_entries 的值(默认值为 128 )
  • 新添加元素的 member 的长度大于服务器属性 server.zset_max_ziplist_value 的值(默认值为 64 )
ZIPLIST 编码的有序集

当使用 REDIS_ENCODING_ZIPLIST 编码时, 有序集将元素保存到 ziplist 数据结构里面。

其中,每个有序集元素以两个相邻的 ziplist 节点表示, 第一个节点保存元素的 member 域, 第二个元素保存元素的 score 域。

多个元素之间按 score 值从小到大排序, 如果两个元素的 score 相同, 那么按字典序对 member 进行对比, 决定那个元素排在前面, 那个元素排在后面。

          |<--  element 1 -->|<--  element 2 -->|<--   .......   -->|

+---------+---------+--------+---------+--------+---------+---------+---------+
| ZIPLIST |         |        |         |        |         |         | ZIPLIST |
| ENTRY   | member1 | score1 | member2 | score2 |   ...   |   ...   | ENTRY   |
| HEAD    |         |        |         |        |         |         | END     |
+---------+---------+--------+---------+--------+---------+---------+---------+

score1 <= score2 <= ...

虽然元素是按 score 域有序排序的, 但对 ziplist 的节点指针只能线性地移动, 所以在 REDIS_ENCODING_ZIPLIST 编码的有序集中, 查找某个给定元素的复杂度为 O(N) 。

每次执行添加/删除/更新操作都需要执行一次查找元素的操作, 因此这些函数的复杂度都不低于 O(N) , 至于这些操作的实际复杂度, 取决于它们底层所执行的 ziplist 操作。

SKIPLIST 编码的有序集

当使用 REDIS_ENCODING_SKIPLIST 编码时, 有序集元素由 redis.h/zset 结构来保存:

/*
 * 有序集
 */
typedef struct zset {

    // 字典
    dict *dict;

    // 跳跃表
    zskiplist *zsl;

} zset;

zset 同时使用字典和跳跃表两个数据结构来保存有序集元素。

其中, 元素的成员由一个 redisObject 结构表示, 而元素的 score 则是一个 double 类型的浮点数, 字典和跳跃表两个结构通过将指针共同指向这两个值来节约空间 (不用每个元素都复制两份)。

Redis 数据类型之有序集

通过使用字典结构, 并将 member 作为键, score 作为值, 有序集可以在 O(1) 复杂度内:

  • 检查给定 member 是否存在于有序集(被很多底层函数使用);
  • 取出 member 对应的 score 值(实现 ZSCORE 命令)。

另一方面, 通过使用跳跃表, 可以让有序集支持以下两种操作:

  • 在 O(logN) 期望时间、 O(N) 最坏时间内根据 score 对 member 进行定位(被很多底层函数使用);
  • 范围性查找和处理操作,这是(高效地)实现 ZRANGE 、 ZRANK 和 ZINTERSTORE 等命令的关键。

通过同时使用字典和跳跃表, 有序集可以高效地实现按成员查找和按顺序查找两种操作。