欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python多进程和多线程究竟谁更快(详解)

程序员文章站 2024-03-01 08:35:34
python3.6 threading和multiprocessing 四核+三星250G-850-SSD 自从用多进程和多线程进行编程,一致没搞懂到底谁更快...

python3.6

threading和multiprocessing

四核+三星250G-850-SSD

自从用多进程和多线程进行编程,一致没搞懂到底谁更快。网上很多都说python多进程更快,因为GIL(全局解释器锁)。但是我在写代码的时候,测试时间却是多线程更快,所以这到底是怎么回事?最近再做分词工作,原来的代码速度太慢,想提速,所以来探求一下有效方法(文末有代码和效果图)

这里先来一张程序的结果图,说明线程和进程谁更快

python多进程和多线程究竟谁更快(详解)

一些定义

并行是指两个或者多个事件在同一时刻发生。并发是指两个或多个事件在同一时间间隔内发生

线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一个程序的执行实例就是一个进程。

实现过程

而python里面的多线程显然得拿到GIL,执行code,最后释放GIL。所以由于GIL,多线程的时候拿不到,实际上,它是并发实现,即多个事件,在同一时间间隔内发生。

但进程有独立GIL,所以可以并行实现。因此,针对多核CPU,理论上采用多进程更能有效利用资源。

现实问题

在网上的教程里面,经常能见到python多线程的身影。比如网络爬虫的教程、端口扫描的教程。

这里拿端口扫描来说,大家可以用多进程实现下面的脚本,会发现python多进程更快。那么不就是和我们分析相悖了吗?

import sys,threading
from socket import *

host = "127.0.0.1" if len(sys.argv)==1 else sys.argv[1]
portList = [i for i in range(1,1000)]
scanList = []
lock = threading.Lock()
print('Please waiting... From ',host)


def scanPort(port):
  try:
    tcp = socket(AF_INET,SOCK_STREAM)
    tcp.connect((host,port))
  except:
    pass
  else:
    if lock.acquire():
      print('[+]port',port,'open')
      lock.release()
  finally:
    tcp.close()

for p in portList:
  t = threading.Thread(target=scanPort,args=(p,))
  scanList.append(t)
for i in range(len(portList)):
  scanList[i].start()
for i in range(len(portList)):
  scanList[i].join()

谁更快

因为python锁的问题,线程进行锁竞争、切换线程,会消耗资源。所以,大胆猜测一下:

在CPU密集型任务下,多进程更快,或者说效果更好;而IO密集型,多线程能有效提高效率。

大家看一下下面的代码:

import time
import threading
import multiprocessing

max_process = 4
max_thread = max_process

def fun(n,n2):
  #cpu密集型
  for i in range(0,n):
    for j in range(0,(int)(n*n*n*n2)):
      t = i*j

def thread_main(n2):
  thread_list = []
  for i in range(0,max_thread):
    t = threading.Thread(target=fun,args=(50,n2))
    thread_list.append(t)

  start = time.time()
  print(' [+] much thread start')
  for i in thread_list:
    i.start()
  for i in thread_list:
    i.join()
  print(' [-] much thread use ',time.time()-start,'s')

def process_main(n2):
  p = multiprocessing.Pool(max_process)
  for i in range(0,max_process):
    p.apply_async(func = fun,args=(50,n2))
  start = time.time()
  print(' [+] much process start')
  p.close()#关闭进程池
  p.join()#等待所有子进程完毕
  print(' [-] much process use ',time.time()-start,'s')

if __name__=='__main__':
  print("[++]When n=50,n2=0.1:")
  thread_main(0.1)
  process_main(0.1)
  print("[++]When n=50,n2=1:")
  thread_main(1)
  process_main(1)
  print("[++]When n=50,n2=10:")
  thread_main(10)
  process_main(10)

结果如下:

python多进程和多线程究竟谁更快(详解)

可以看出来,当对cpu使用率越来越高的时候(代码循环越多的时候),差距越来越大。验证我们猜想

CPU和IO密集型

1、CPU密集型代码(各种循环处理、计数等等)

2、IO密集型代码(文件处理、网络爬虫等)

判断方法:

1、直接看CPU占用率, 硬盘IO读写速度

2、计算较多->CPU;时间等待较多(如网络爬虫)->IO

3、请自行百度

以上这篇python多进程和多线程究竟谁更快(详解)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。