MySQL中一些优化straight_join技巧
在oracle中可以指定的表连接的hint有很多:ordered hint 指示oracle按照from关键字后的表顺序来进行连接;leading hint 指示查询优化器使用指定的表作为连接的首表,即驱动表;use_nl hint指示查询优化器使用nested loops方式连接指定表和其他行源,并且将强制指定表作为inner表。
在mysql中就有之对应的straight_join,由于mysql只支持nested loops的连接方式,所以这里的straight_join类似oracle中的use_nl hint。mysql优化器在处理多表的关联的时候,很有可能会选择错误的驱动表进行关联,导致了关联次数的增加,从而使得sql语句执行变得非常的缓慢,这个时候需要有经验的dba进行判断,选择正确的驱动表,这个时候straight_join就起了作用了,下面我们来看一看使用straight_join进行优化的案例:
1.用户实例:spxxxxxx的一条sql执行非常的缓慢,sql如下:
73871 | root | 127.0.0.1:49665 | user_app_test | query | 500 | sorting result | select date(practicetime) date_time,count(distinct a.userid) people_rows from test_log a,user b where a.userid=b.userid and b.isfree=0 and length(b.username)>4 group by date(practicetime)
2.查看执行计划:
mysql> explain select date(practicetime) date_time,count(distinct a.userid) people_rows from test_log a,user b where a.userid=b.userid and b.isfree=0 and length(b.username)>4 group by date(practicetime); mysql> explain select date(practicetime) date_time,count(distinct a.userid) people_rows -> from test_log a,user b -> where a.userid=b.userid and b.isfree=0 and length(b.username)>4 -> group by date(practicetime)\g; *************************** 1. row *************************** id: 1 select_type: simple table: a type: all possible_keys: ix_test_log_userid key: null key_len: null ref: null rows: 416782 extra: using filesort *************************** 2. row *************************** id: 1 select_type: simple table: b type: eq_ref possible_keys: primary key: primary key_len: 96 ref: user_app_testnew.a.userid rows: 1 extra: using where 2 rows in set (0.00 sec)
3.查看索引:
mysql> show index from test_log; +————–+————+————————-+————–+————-+———–+————-+———-++ | table | non_unique | key_name | seq_in_index | column_name | collation | cardinality | sub_part | packed | null | index_type | comment | +————–+————+————————-+————–+————-+———–+————-+———-++ | test_log | 0 | ix_test_log_unique_ | 1 | unitid | a | 20 | null | null | | btree | | | test_log | 0 | ix_test_log_unique_ | 2 | paperid | a | 20 | null | null | | btree | | | test_log | 0 | ix_test_log_unique_ | 3 | qtid | a | 20 | null | null | | btree | | | test_log | 0 | ix_test_log_unique_ | 4 | userid | a | 400670 | null | null | | btree | | | test_log | 0 | ix_test_log_unique_ | 5 | serial | a | 400670 | null | null | | btree | | | test_log | 1 | ix_test_log_unit | 1 | unitid | a | 519 | null | null | | btree | | | test_log | 1 | ix_test_log_unit | 2 | paperid | a | 2023 | null | null | | btree | | | test_log | 1 | ix_test_log_unit | 3 | qtid | a | 16694 | null | null | | btree | | | test_log | 1 | ix_test_log_serial | 1 | serial | a | 133556 | null | null | | btree | | | test_log | 1 | ix_test_log_userid | 1 | userid | a | 5892 | null | null | | btree | | +————–+————+————————-+————–+————-+———–+————-+———-+——–+——+——-+
4.调整索引,a表优化采用覆盖索引:
mysql>alter table test_log drop index ix_test_log_userid,add index ix_test_log_userid(userid,practicetime)
5.查看执行计划:
mysql> explain select date(practicetime) date_time,count(distinct a.userid) people_rows from test_log a,user b where a.userid=b.userid and b.isfree=0 and length(b.username)>4 group by date(practicetime)\g *************************** 1. row *************************** id: 1 select_type: simple table: a type: index possible_keys: ix_test_log_userid key: ix_test_log_userid key_len: 105 ref: null rows: 388451 extra: using index; using filesort *************************** 2. row *************************** id: 1 select_type: simple table: b type: eq_ref possible_keys: primary key: primary key_len: 96 ref: user_app_test.a.userid rows: 1 extra: using where 2 rows in set (0.00 sec)
调整后执行稍有效果,但是还不明显,还没有找到要害:
select date(practicetime) date_time,count(distinct a.userid) people_rows from test_log a,user b where a.userid=b.userid and b.isfree=0 and length(b.username)>4 group by date(practicetime); ………………. 143 rows in set (1 min 12.62 sec)
6.执行时间仍然需要很长,时间的消耗主要耗费在using filesort中,参与排序的数据量有38w之多,所以需要转换驱动表;尝试采用user表做驱动表:使用straight_join强制连接顺序:
mysql> explain select date(practicetime) date_time,count(distinct a.userid) people_rows from user b straight_join test_log a where a.userid=b.userid and b.isfree=0 and length(b.username)>4 group by date(practicetime)\g; *************************** 1. row *************************** id: 1 select_type: simple table: b type: all possible_keys: primary key: null key_len: null ref: null rows: 42806 extra: using where; using temporary; using filesort *************************** 2. row *************************** id: 1 select_type: simple table: a type: ref possible_keys: ix_test_log_userid key: ix_test_log_userid key_len: 96 ref: user_app_test.b.userid rows: 38 extra: using index 2 rows in set (0.00 sec)
执行时间已经有了质的变化,降低到了2.56秒;
mysql>select date(practicetime) date_time,count(distinct a.userid) people_rows from user b straight_join test_log a where a.userid=b.userid and b.isfree=0 and length(b.username)>4 group by date(practicetime); …….. 143 rows in set (2.56 sec)
7.在分析执行计划的第一步:using where; using temporary; using filesort,user表其实也可以采用覆盖索引来避免using where的出现,所以继续调整索引:
mysql> show index from user; +——-+————+——————+————–+————-+———–+————-+———-+——–+——+————+———+ | table | non_unique | key_name | seq_in_index | column_name | collation | cardinality | sub_part | packed | null | index_type | comment | +——-+————+——————+————–+————-+———–+————-+———-+——–+——+————+———+ | user | 0 | primary | 1 | userid | a | 43412 | null | null | | btree | | | user | 0 | ix_user_email | 1 | email | a | 43412 | null | null | | btree | | | user | 1 | ix_user_username | 1 | username | a | 202 | null | null | | btree | | +——-+————+——————+————–+————-+———–+————-+———-+——–+——+————+———+ 3 rows in set (0.01 sec) mysql>alter table user drop index ix_user_username,add index ix_user_username(username,isfree); query ok, 42722 rows affected (0.73 sec) records: 42722 duplicates: 0 warnings: 0 mysql>explain select date(practicetime) date_time,count(distinct a.userid) people_rows from user b straight_join test_log a where a.userid=b.userid and b.isfree=0 and length(b.username)>4 group by date(practicetime); *************************** 1. row *************************** id: 1 select_type: simple table: b type: index possible_keys: primary key: ix_user_username key_len: 125 ref: null rows: 42466 extra: using where; using index; using temporary; using filesort *************************** 2. row *************************** id: 1 select_type: simple table: a type: ref possible_keys: ix_test_log_userid key: ix_test_log_userid key_len: 96 ref: user_app_test.b.userid rows: 38 extra: using index 2 rows in set (0.00 sec)
8.执行时间降低到了1.43秒:
mysql>select date(practicetime) date_time,count(distinct a.userid) people_rows from user b straight_join test_log a where a.userid=b.userid and b.isfree=0 and length(b.username)>4 group by date(practicetime); 。。。。。。。 143 rows in set (1.43 sec)
上一篇: 环形缓冲区应用实例