欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

redis 数据结构之跳跃表

程序员文章站 2024-02-28 21:44:52
...

数据结构

跳跃表

typedef struct zskiplist {
    struct zskiplistNode *header,*tail;
    unsigned long length;
    int level;
} zskiplist;

length 节点数量
level 表的最大层

跳跃表节点

typedef struct zskiplistNode {
    sds ele;
    double score;
    struct zskiplistNode *backword;
    struct zskiplistLevel {
        struct zskiplistNode *forward;
        unsigned int span;
    } level[];
} zskiplistNode;

score 分值
forward 前进指针
span 间隔的节点数量,当前节点和下一个节点的距离,初始span为0,level[0]的span都为1

demo

redis 数据结构之跳跃表

源码API分析

创建skiplist

/* Create a new skiplist. */
zskiplist *zslCreate(void) {
    int j;
    zskiplist *zsl;
    zsl = zmalloc(sizeof(*zsl));
    zsl->level = 1;
    zsl->length = 0;
    zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
    for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
        zsl->header->level[j].forward = NULL;
        zsl->header->level[j].span = 0;
    }
    zsl->header->backward = NULL;
    zsl->tail = NULL;
    return zsl;
}

头节点的层是ZSKIPLIST_MAXLEVEL 32

zslFree 释放给定跳跃表

/* Free the specified skiplist node. The referenced SDS string representation
 * of the element is freed too, unless node->ele is set to NULL before calling
 * this function. */
void zslFreeNode(zskiplistNode *node) {
    sdsfree(node->ele);
    zfree(node);
}

/* Free a whole skiplist. */
void zslFree(zskiplist *zsl) {
    zskiplistNode *node = zsl->header->level[0].forward, *next;//逗号表达式 声明了一个 zskiplistNode * 变量

    zfree(zsl->header);
    while(node) {
        next = node->level[0].forward;
        zslFreeNode(node);
        node = next;
    }
    zfree(zsl);
}

从头节点依次释放,时间复杂度O(N)

zslCreateNode创建skiplistNode

/* Create a skiplist node with the specified number of levels.
 * The SDS string 'ele' is referenced by the node after the call. */
zskiplistNode *zslCreateNode(int level, double score, sds ele) {
    zskiplistNode *zn =
        zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel));
    zn->score = score;
    zn->ele = ele;
    return zn;
}

生成随机level

int zslRandomLevel(void) {
    int level = 1;
    while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF))
        level += 1;
    return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
}

ZSKIPLIST_P的值是0.25,random()生成的数,转换成32位表示,高三位只有001、000满足,也就是说,k层的概率是k+1层概率的4倍

查找member的rank(ZRANK)

/* Find the rank for an element by both score and key.
 * Returns 0 when the element cannot be found, rank otherwise.
 * Note that the rank is 1-based due to the span of zsl->header to the
 * first element. */
unsigned long zslGetRank(zskiplist *zsl, double score, sds ele) {
    zskiplistNode *x;
    unsigned long rank = 0;
    int i;

    //起始位置是从header开始
    x = zsl->header;
    //从跳跃表的level-1的位置开始,向下遍历
    for (i = zsl->level-1; i >= 0; i--) {
        //当前进指针不为null && 要查找的节点值在forward节点的前面(也就是说还需要往前查找)
        while (x->level[i].forward &&
            (x->level[i].forward->score < score ||
                (x->level[i].forward->score == score &&
                sdscmp(x->level[i].forward->ele,ele) <= 0))) {

            //rank加上这一层的span
            rank += x->level[i].span;

            //x前移
            x = x->level[i].forward;
        }

        /* x might be equal to zsl->header, so test if obj is non-NULL */
        if (x->ele && sdscmp(x->ele,ele) == 0) {
            return rank;
        }
    }
    return 0;
}

查找的过程类似树的查找,从K层开始查找,查找的score大于当前的score,指针前移,小于就从指针指向的位置的K-1层开始查找

插入新的Node

/* Insert a new node in the skiplist. Assumes the element does not already
 * exist (up to the caller to enforce that). The skiplist takes ownership
 * of the passed SDS string 'ele'. */
zskiplistNode *zslInsert(zskiplist *zsl, double score, sds ele) {
    //update记录的是插入节点的每一层的上一个节点
    zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
    unsigned int rank[ZSKIPLIST_MAXLEVEL];
    int i, level;

    serverAssert(!isnan(score));
    x = zsl->header;
    for (i = zsl->level-1; i >= 0; i--) {
        /* store rank that is crossed to reach the insert position */
        rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];
        while (x->level[i].forward &&
                (x->level[i].forward->score < score ||
                    (x->level[i].forward->score == score &&
                    sdscmp(x->level[i].forward->ele,ele) < 0)))
        {
            rank[i] += x->level[i].span;//rank[i]记录的是i层到从表头到update[i]的距离
            x = x->level[i].forward;
        }
        //x为待插入节点的每一层的最后一个位置
        update[i] = x;
    }
    /* we assume the element is not already inside, since we allow duplicated
     * scores, reinserting the same element should never happen since the
     * caller of zslInsert() should test in the hash table if the element is
     * already inside or not. */

    //新节点的level长度random是随机数
    level = zslRandomLevel();
    //如果random 大于 skiplist的最大层max,更新头节点的max到random层中的span,更新skiplist的最大层
    if (level > zsl->level) {
        for (i = zsl->level; i < level; i++) {
            rank[i] = 0;
            update[i] = zsl->header;
            update[i]->level[i].span = zsl->length;//表头i层的span等于length
        }
        zsl->level = level;
    }
    x = zslCreateNode(level,score,ele);
    for (i = 0; i < level; i++) {
        //第i层 节点插入update[i]的后面
        x->level[i].forward = update[i]->level[i].forward;
        update[i]->level[i].forward = x;//i层x的前后节点都初始化

        /* update span covered by update[i] as x is inserted here */
        // update[i]->level[i].span  i层x上一个节点到x下一个节点的距离
        // rank[i] i层上一个节点到表头的距离
        // rank[0]+1 是x到表头的距离
        x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);
        update[i]->level[i].span = (rank[0] - rank[i]) + 1;
    }

    /* increment span for untouched levels */
    //从random到max的这些层span进行更新
    for (i = level; i < zsl->level; i++) {
        update[i]->level[i].span++;
    }

    x->backward = (update[0] == zsl->header) ? NULL : update[0];
    if (x->level[0].forward)
        x->level[0].forward->backward = x;
    else
        zsl->tail = x;
    zsl->length++;
    return x;
}

时间复杂度 平均O(logN),最差O(N) ps(i+1层是i层数的1/2,0层的平均耗时为N/2)

zslDelete 删除,和插入类似,忽略。

注意

跳跃表允许重复的score值
查找的时候需要检查score值和member,查找的时候是从跳跃表的最大层在头节点开始查找,依次往下次查找,查找都是用的forward
头节点的最大层是32,跳跃表的最大层为节点的最大层
每层保存的span可以用来快速计算最后的rank,跳跃表的查找性能很高

相关标签: redis 数据结构