Anaconda安装+TensorFlow安装+Keras安装+numpy安装(包含镜像和版本信息兼容问题)
程序员文章站
2024-02-28 18:58:52
...
TensorFlow与Keras以及Python版本一一对应表
Framework | Env name (--env parameter) | Description |
---|---|---|
TensorFlow 2.2 | tensorflow-2.2 | TensorFlow 2.2.0 + Keras 2.3.1 on Python 3.7. |
TensorFlow 2.1 | tensorflow-2.1 | TensorFlow 2.1.0 + Keras 2.3.1 on Python 3.6. |
TensorFlow 2.0 | tensorflow-2.0 | TensorFlow 2.0.0 + Keras 2.3.1 on Python 3.6. |
TensorFlow 1.15 | tensorflow-1.15 | TensorFlow 1.15.0 + Keras 2.3.1 on Python 3.6. |
TensorFlow 1.14 | tensorflow-1.14 | TensorFlow 1.14.0 + Keras 2.2.5 on Python 3.6. |
TensorFlow 1.13 | tensorflow-1.13 | TensorFlow 1.13.0 + Keras 2.2.4 on Python 3.6. |
TensorFlow 1.12 | tensorflow-1.12 | TensorFlow 1.12.0 + Keras 2.2.4 on Python 3.6. |
tensorflow-1.12:py2 | TensorFlow 1.12.0 + Keras 2.2.4 on Python 2. | |
TensorFlow 1.11 | tensorflow-1.11 | TensorFlow 1.11.0 + Keras 2.2.4 on Python 3.6. |
tensorflow-1.11:py2 | TensorFlow 1.11.0 + Keras 2.2.4 on Python 2. | |
TensorFlow 1.10 | tensorflow-1.10 | TensorFlow 1.10.0 + Keras 2.2.0 on Python 3.6. |
tensorflow-1.10:py2 | TensorFlow 1.10.0 + Keras 2.2.0 on Python 2. | |
TensorFlow 1.9 | tensorflow-1.9 | TensorFlow 1.9.0 + Keras 2.2.0 on Python 3.6. |
tensorflow-1.9:py2 | TensorFlow 1.9.0 + Keras 2.2.0 on Python 2. | |
TensorFlow 1.8 | tensorflow-1.8 | TensorFlow 1.8.0 + Keras 2.1.6 on Python 3.6. |
tensorflow-1.8:py2 | TensorFlow 1.8.0 + Keras 2.1.6 on Python 2. | |
TensorFlow 1.7 | tensorflow-1.7 | TensorFlow 1.7.0 + Keras 2.1.6 on Python 3.6. |
tensorflow-1.7:py2 | TensorFlow 1.7.0 + Keras 2.1.6 on Python 2. | |
TensorFlow 1.5 | tensorflow-1.5 | TensorFlow 1.5.0 + Keras 2.1.6 on Python 3.6. |
tensorflow-1.5:py2 | TensorFlow 1.5.0 + Keras 2.1.6 on Python 2. | |
TensorFlow 1.4 | tensorflow-1.4 | TensorFlow 1.4.0 + Keras 2.0.8 on Python 3.6. |
tensorflow-1.4:py2 | TensorFlow 1.4.0 + Keras 2.0.8 on Python 2. | |
TensorFlow 1.3 | tensorflow-1.3 | TensorFlow 1.3.0 + Keras 2.0.6 on Python 3.6. |
tensorflow-1.3:py2 | TensorFlow 1.3.0 + Keras 2.0.6 on Python 2. | |
TensorFlow 1.2 | tensorflow-1.2 | TensorFlow 1.2.0 + Keras 2.0.6 on Python 3.5. |
tensorflow-1.2:py2 | TensorFlow 1.2.0 + Keras 2.0.6 on Python 2. | |
TensorFlow 1.1 | tensorflow | TensorFlow 1.1.0 + Keras 2.0.6 on Python 3.5. |
tensorflow:py2 | TensorFlow 1.1.0 + Keras 2.0.6 on Python 2. | |
TensorFlow 1.0 | tensorflow-1.0 | TensorFlow 1.0.0 + Keras 2.0.6 on Python 3.5. |
tensorflow-1.0:py2 | TensorFlow 1.0.0 + Keras 2.0.6 on Python 2. | |
TensorFlow 0.12 | tensorflow-0.12 | TensorFlow 0.12.1 + Keras 1.2.2 on Python 3.5. |
tensorflow-0.12:py2 | TensorFlow 0.12.1 + Keras 1.2.2 on Python 2. | |
PyTorch 1.5 | pytorch-1.5 | PyTorch 1.5.0 + fastai 1.0.61 on Python 3.7. |
PyTorch 1.4 | pytorch-1.4 | PyTorch 1.4.0 + fastai 1.0.60 on Python 3.6. |
PyTorch 1.3 | pytorch-1.3 | PyTorch 1.3.0 + fastai 1.0.60 on Python 3.6. |
PyTorch 1.2 | pytorch-1.2 | PyTorch 1.2.0 + fastai 1.0.60 on Python 3.6. |
PyTorch 1.1 | pytorch-1.1 | PyTorch 1.1.0 + fastai 1.0.57 on Python 3.6. |
PyTorch 1.0 | pytorch-1.0 | PyTorch 1.0.0 + fastai 1.0.51 on Python 3.6. |
pytorch-1.0:py2 | PyTorch 1.0.0 on Python 2. | |
PyTorch 0.4 | pytorch-0.4 | PyTorch 0.4.1 on Python 3.6. |
pytorch-0.4:py2 | PyTorch 0.4.1 on Python 2. | |
PyTorch 0.3 | pytorch-0.3 | PyTorch 0.3.1 on Python 3.6. |
pytorch-0.3:py2 | PyTorch 0.3.1 on Python 2. | |
PyTorch 0.2 | pytorch-0.2 | PyTorch 0.2.0 on Python 3.5 |
pytorch-0.2:py2 | PyTorch 0.2.0 on Python 2. | |
PyTorch 0.1 | pytorch-0.1 | PyTorch 0.1.12 on Python 3. |
pytorch-0.1:py2 | PyTorch 0.1.12 on Python 2. | |
Theano 0.9 | theano-0.9 | Theano rel-0.8.2 + Keras 2.0.3 on Python3.5. |
theano-0.9:py2 | Theano rel-0.8.2 + Keras 2.0.3 on Python2. | |
Caffe | caffe | Caffe rc4 on Python3.5. |
caffe:py2 | Caffe rc4 on Python2. | |
Torch | torch | Torch 7 with Python 3 env. |
torch:py2 | Torch 7 with Python 2 env. | |
Chainer 1.23 | chainer-1.23 | Chainer 1.23.0 on Python 3. |
chainer-1.23:py2 | Chainer 1.23.0 on Python 2. | |
Chainer 2.0 | chainer-2.0 | Chainer 1.23.0 on Python 3. |
chainer-2.0:py2 | Chainer 1.23.0 on Python 2. | |
MxNet 1.0 | mxnet | MxNet 1.0.0 on Python 3.6. |
mxnet:py2 | MxNet 1.0.0 on Python 2. |
安装Anaconda
Anaconda各个版本的安装包(官网)(根据对应的Python版本找到需要的Anaconda版本安装包进行下载)
安装Anaconda时所有的框框都✔打勾,直接傻瓜式安装。(注意选择安装地址的时候,地址不要包含中文)
需要添加的镜像:
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
tensorflow和numpy对应的版本
tensorflow | numpy | cuda | cudnn |
---|---|---|---|
2.0.0 | 1.16.4 | ||
1.14.0 | 1.16.0 | 10.0 | 7.6.5 |
1.13.1 | 1.16.0 | ||
1.12.0 | 1.15.4 | ||
1.8.0 | 1.14.5 |
更改numpy版本方法:
pip install -U -i https://pypi.tuna.tsinghua.edu.cn/simple numpy==版本
# -U 是重装
# -i https://pypi.tuna.tsinghua.edu.cn/simple 是使用清华镜像
或者用另外一个镜像(这个镜像的速度更快)
http://pypi.douban.com/simple --trusted-host pypi.douban.com
1.打开Anaconda Prompt,检查Anaconda是否成功安装:conda --version
2.检测目前安装了哪些环境:conda info --envs
4.安装不同版本的python:conda create -n tensorflow python=3.6.5
用到的视频安装教程:Anaconda、Tensorflow、keras安装可能出现的问题及解决/经验分享
教程中用到的命令:Anaconda Prompt
1.(base)环境
python -m pip install -U pip
//正确的结果为:Successfully...
2.(base)环境
//创建名为tensorflow的环境,同时安装python
conda create --name tensorflow python=3.6
3.(base)
activate tensorflow
4.(tensorflow)
pip install tensorflow==1.15.0 -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
5.(tensorflow)
//检查tensorflow是否安装成功
python
import tensorflow as tf
//出现安装时间就是安装成功
6.(tensorflow)
pip install keras==2.2.5 -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
7.(tensorflow)
//检查keras是否安装成功
python
import keras
//安装成功会显示Using TensofFlow backend
我的Anaconda版本:Anaconda3-5.2.0
Python版本:3.6.1.2
keras版本:2.3.1
numpy版本:1.13.1
tensorflow版本:1.2.1
上一篇: Java项目中的日志(logger)