分析MySQL中索引引引发的CPU负载飙升的问题
程序员文章站
2024-02-28 14:01:16
收到一个mysql服务器负载告警,上去一看,load average都飙到280多了,用top一看,cpu跑到了336%,不过io和内存的负载并不高,根据经验,应该又是一起...
收到一个mysql服务器负载告警,上去一看,load average都飙到280多了,用top一看,cpu跑到了336%,不过io和内存的负载并不高,根据经验,应该又是一起索引引起的*了。
看下processlist以及slow query情况,发现有一个sql经常出现,执行计划中的扫描记录数看着还可以,单次执行耗时为0.07s,还不算太大。乍一看,可能不是它引发的,但出现频率实在太高,而且执行计划看起来也不够完美:
mysql> explain select count(1) from a , b where a.id = b.video_id and b.state = 1 and b.column_id = '81'\g
*************************** 1. row *************************** id: 1 select_type: simple table: b type: index_merge possible_keys: columnid_videoid,column_id,state,video_time_stamp,idx_videoid key: column_id,state key_len: 4,4 ref: null rows: 100 extra: using intersect(column_id,state); using where *************************** 2. row *************************** id: 1 select_type: simple table: a type: eq_ref possible_keys: primary key: primary key_len: 4 ref: b.video_id rows: 1 extra: using where; using index
再看下该表的索引情况:
mysql> show index from b\g
*************************** 1. row *************************** table: b non_unique: 0 key_name: primary seq_in_index: 1 column_name: id collation: a cardinality: 167483 sub_part: null packed: null null: index_type: btree comment: index_comment: *************************** 2. row *************************** table: b non_unique: 1 key_name: column_id seq_in_index: 1 column_name: column_id collation: a cardinality: 8374 sub_part: null packed: null null: index_type: btree comment: index_comment: *************************** 3. row *************************** table: b non_unique: 1 key_name: state seq_in_index: 2 column_name: state collation: a cardinality: 5 sub_part: null packed: null null: index_type: btree comment: index_comment:
可以看到执行计划中,使用的是index merge,效率自然没有用联合索引(也有的叫做覆盖索引)来的好了,而且 state 字段的基数(唯一性)太差,索引效果很差。删掉两个独立索引,修改成联合看看效果如何:
mysql> show index from b;
*************************** 1. row *************************** table: b non_unique: 0 key_name: primary seq_in_index: 1 column_name: id collation: a cardinality: 128151 sub_part: null packed: null null: index_type: btree comment: index_comment: *************************** 2. row *************************** table: b non_unique: 1 key_name: idx_columnid_state seq_in_index: 1 column_name: column_id collation: a cardinality: 3203 sub_part: null packed: null null: index_type: btree comment: index_comment: *************************** 3. row *************************** table: b non_unique: 1 key_name: idx_columnid_state seq_in_index: 2 column_name: state collation: a cardinality: 3463 sub_part: null packed: null null: index_type: btree comment: index_comment: mysql> explain select count(1) from a , b where a.id = b.video_id and b.state = 1 and b.column_id = '81' \g *************************** 1. row *************************** id: 1 select_type: simple table: b type: ref possible_keys: columnid_videoid,idx_videoid,idx_columnid_state key: columnid_videoid key_len: 4 ref: const rows: 199 extra: using where *************************** 2. row *************************** id: 1 select_type: simple table: a type: eq_ref possible_keys: primary key: primary key_len: 4 ref: b.video_id rows: 1 extra: using where; using index
可以看到执行计划变成了只用到了 idx_columnid_state 索引,而且 ref 类型也变成了 const,sql执行耗时也从0.07s变成了0.00s,相应的cpu负载也从336%突降到了12%不到。
总结下,从多次历史经验来看,如果cpu负载持续很高,但内存和io都还好的话,这种情况下,首先想到的一定是索引问题,十有八九错不了。