欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python实现的矩阵类实例

程序员文章站 2024-02-27 22:25:03
本文实例讲述了Python实现的矩阵类。分享给大家供大家参考,具体如下: 科学计算离不开矩阵的运算。当然,python已经有非常好的现成的库:numpy(numpy的简单...

本文实例讲述了Python实现的矩阵类。分享给大家供大家参考,具体如下:

科学计算离不开矩阵的运算。当然,python已经有非常好的现成的库:numpy(numpy的简单安装与使用可参考http://www.jb51.net/article/66236.htm)

我写这个矩阵类,并不是打算重新造一个*,只是作为一个练习,记录在此。

注:这个类的函数还没全部实现,慢慢在完善吧。

全部代码:

import copy
class Matrix:
  '''矩阵类'''
  def __init__(self, row, column, fill=0.0):
    self.shape = (row, column)
    self.row = row
    self.column = column
    self._matrix = [[fill]*column for i in range(row)]
  # 返回元素m(i, j)的值: m[i, j]
  def __getitem__(self, index):
    if isinstance(index, int):
      return self._matrix[index-1]
    elif isinstance(index, tuple):
      return self._matrix[index[0]-1][index[1]-1]
  # 设置元素m(i,j)的值为s: m[i, j] = s
  def __setitem__(self, index, value):
    if isinstance(index, int):
      self._matrix[index-1] = copy.deepcopy(value)
    elif isinstance(index, tuple):
      self._matrix[index[0]-1][index[1]-1] = value
  def __eq__(self, N):
    '''相等'''
    # A == B
    assert isinstance(N, Matrix), "类型不匹配,不能比较"
    return N.shape == self.shape # 比较维度,可以修改为别的
  def __add__(self, N):
    '''加法'''
    # A + B
    assert N.shape == self.shape, "维度不匹配,不能相加"
    M = Matrix(self.row, self.column)
    for r in range(self.row):
      for c in range(self.column):
        M[r, c] = self[r, c] + N[r, c]
    return M
  def __sub__(self, N):
    '''减法'''
    # A - B
    assert N.shape == self.shape, "维度不匹配,不能相减"
    M = Matrix(self.row, self.column)
    for r in range(self.row):
      for c in range(self.column):
        M[r, c] = self[r, c] - N[r, c]
    return M
  def __mul__(self, N):
    '''乘法'''
    # A * B (或:A * 2.0)
    if isinstance(N, int) or isinstance(N,float):
      M = Matrix(self.row, self.column)
      for r in range(self.row):
        for c in range(self.column):
          M[r, c] = self[r, c]*N
    else:
      assert N.row == self.column, "维度不匹配,不能相乘"
      M = Matrix(self.row, N.column)
      for r in range(self.row):
        for c in range(N.column):
          sum = 0
          for k in range(self.column):
            sum += self[r, k] * N[k, r]
          M[r, c] = sum
    return M
  def __div__(self, N):
    '''除法'''
    # A / B
    pass
  def __pow__(self, k):
    '''乘方'''
    # A**k
    assert self.row == self.column, "不是方阵,不能乘方"
    M = copy.deepcopy(self)
    for i in range(k):
      M = M * self
    return M
  def rank(self):
    '''矩阵的秩'''
    pass
  def trace(self):
    '''矩阵的迹'''
    pass
  def adjoint(self):
    '''伴随矩阵'''
    pass
  def invert(self):
    '''逆矩阵'''
    assert self.row == self.column, "不是方阵"
    M = Matrix(self.row, self.column*2)
    I = self.identity() # 单位矩阵
    I.show()#############################
    # 拼接
    for r in range(1,M.row+1):
      temp = self[r]
      temp.extend(I[r])
      M[r] = copy.deepcopy(temp)
    M.show()#############################
    # 初等行变换
    for r in range(1, M.row+1):
      # 本行首元素(M[r, r])若为 0,则向下交换最近的当前列元素非零的行
      if M[r, r] == 0:
        for rr in range(r+1, M.row+1):
          if M[rr, r] != 0:
            M[r],M[rr] = M[rr],M[r] # 交换两行
          break
      assert M[r, r] != 0, '矩阵不可逆'
      # 本行首元素(M[r, r])化为 1
      temp = M[r,r] # 缓存
      for c in range(r, M.column+1):
        M[r, c] /= temp
        print("M[{0}, {1}] /= {2}".format(r,c,temp))
      M.show()
      # 本列上、下方的所有元素化为 0
      for rr in range(1, M.row+1):
        temp = M[rr, r] # 缓存
        for c in range(r, M.column+1):
          if rr == r:
            continue
          M[rr, c] -= temp * M[r, c]
          print("M[{0}, {1}] -= {2} * M[{3}, {1}]".format(rr, c, temp,r))
        M.show()
    # 截取逆矩阵
    N = Matrix(self.row,self.column)
    for r in range(1,self.row+1):
      N[r] = M[r][self.row:]
    return N
  def jieti(self):
    '''行简化阶梯矩阵'''
    pass
  def transpose(self):
    '''转置'''
    M = Matrix(self.column, self.row)
    for r in range(self.column):
      for c in range(self.row):
        M[r, c] = self[c, r]
    return M
  def cofactor(self, row, column):
    '''代数余子式(用于行列式展开)'''
    assert self.row == self.column, "不是方阵,无法计算代数余子式"
    assert self.row >= 3, "至少是3*3阶方阵"
    assert row <= self.row and column <= self.column, "下标超出范围"
    M = Matrix(self.column-1, self.row-1)
    for r in range(self.row):
      if r == row:
        continue
      for c in range(self.column):
        if c == column:
          continue
        rr = r-1 if r > row else r
        cc = c-1 if c > column else c
        M[rr, cc] = self[r, c]
    return M
  def det(self):
    '''计算行列式(determinant)'''
    assert self.row == self.column,"非行列式,不能计算"
    if self.shape == (2,2):
      return self[1,1]*self[2,2]-self[1,2]*self[2,1]
    else:
      sum = 0.0
      for c in range(self.column+1):
        sum += (-1)**(c+1)*self[1,c]*self.cofactor(1,c).det()
      return sum
  def zeros(self):
    '''全零矩阵'''
    M = Matrix(self.column, self.row, fill=0.0)
    return M
  def ones(self):
    '''全1矩阵'''
    M = Matrix(self.column, self.row, fill=1.0)
    return M
  def identity(self):
    '''单位矩阵'''
    assert self.row == self.column, "非n*n矩阵,无单位矩阵"
    M = Matrix(self.column, self.row)
    for r in range(self.row):
      for c in range(self.column):
        M[r, c] = 1.0 if r == c else 0.0
    return M
  def show(self):
    '''打印矩阵'''
    for r in range(self.row):
      for c in range(self.column):
        print(self[r+1, c+1],end=' ')
      print()
if __name__ == '__main__':
  m = Matrix(3,3,fill=2.0)
  n = Matrix(3,3,fill=3.5)
  m[1] = [1.,1.,2.]
  m[2] = [1.,2.,1.]
  m[3] = [2.,1.,1.]
  p = m * n
  q = m*2.1
  r = m**3
  #r.show()
  #q.show()
  #print(p[1,1])
  #r = m.invert()
  #s = r*m
  print()
  m.show()
  print()
  #r.show()
  print()
  #s.show()
  print()
  print(m.det())

更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python正则表达式用法总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。