欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ES6 (三十)装饰器Decorator、core-decorators.js、Mixin、Trait

程序员文章站 2024-02-27 16:11:27
...

ES6 (三十)装饰器Decorator、core-decorators.js、Mixin、Trait

[说明] Decorator 提案经过了大幅修改,目前还没有定案,不知道语法会不会再变。下面的内容完全依据以前的提案,已经有点过时了。等待定案以后,需要完全重写。

总结:

  • ==装饰器(Decorator)是一种与类(class)相关的语法,用来注释或修改类和类方法。==许多面向对象的语言都有这项功能,目前有一个提案将其引入了 ECMAScript。
  • 装饰器是一种函数,写成@ + 函数名。它可以放在类和类方法的定义前面。
  • 装饰器本质就是编译时执行的函数。
  • 装饰器只能用于类和类的方法,不能用于函数,因为存在函数提升。
@frozen class Foo {
  @configurable(false)
  @enumerable(true)
  method() {}

  @throttle(500)
  expensiveMethod() {}
}

上面代码一共使用了四个装饰器,一个用在类本身,另外三个用在类方法。它们不仅增加了代码的可读性,清晰地表达了意图,而且提供一种方便的手段,增加或修改类的功能。

1. 类的装饰

装饰器可以用来装饰整个类。

@testable
class MyTestableClass {
  // ...
}

//装饰器函数,装饰器是一个对类进行处理的函数。装饰器函数的第一个参数,就是所要装饰的目标类。
function testable(target) {
  target.isTestable = true;
}

MyTestableClass.isTestable // true

上面代码中,@testable就是一个装饰器。它修改了MyTestableClass这个类的行为,为它加上了静态属性isTestabletestable函数的参数targetMyTestableClass类本身。

基本上,装饰器的行为就是下面这样。

@decorator
class A {}

// 等同于

class A {}
A = decorator(A) || A;

也就是说,装饰器是一个对类进行处理的函数。装饰器函数的第一个参数,就是所要装饰的目标类。

function testable(target) {
  // ...
}

上面代码中,testable函数的参数target,就是会被装饰的类。

如果觉得一个参数不够用,可以在装饰器外面再封装一层函数。

function testable(isTestable) {
  return function(target) {
    target.isTestable = isTestable;
  }
}

@testable(true)
class MyTestableClass {}
MyTestableClass.isTestable // true

@testable(false)
class MyClass {}
MyClass.isTestable // false

上面代码中,装饰器testable可以接受参数,这就等于可以修改装饰器的行为。

注意,装饰器对类的行为的改变,是代码编译时发生的,而不是在运行时。这意味着,装饰器能在编译阶段运行代码。也就是说,装饰器本质就是编译时执行的函数。

前面的例子是为类添加一个静态属性,如果想添加实例属性,可以通过目标类的prototype对象操作。

function testable(target) {
  target.prototype.isTestable = true;
}

@testable
class MyTestableClass {}

let obj = new MyTestableClass();
obj.isTestable // true

上面代码中,装饰器函数testable是在目标类的prototype对象上添加属性,因此就可以在实例上调用。

下面是另外一个例子。

// mixins.js
export function mixins(...list) {
  return function (target) {
    Object.assign(target.prototype, ...list)
  }
}

// main.js
import { mixins } from './mixins'

const Foo = {
  foo() { console.log('foo') }
};

@mixins(Foo)
class MyClass {}

let obj = new MyClass();
obj.foo() // 'foo'

上面代码通过装饰器mixins,把Foo对象的方法添加到了MyClass的实例上面。可以用Object.assign()模拟这个功能。

const Foo = {
  foo() { console.log('foo') }
};

class MyClass {}

Object.assign(MyClass.prototype, Foo);

let obj = new MyClass();
obj.foo() // 'foo'

实际开发中,React 与 Redux 库结合使用时,常常需要写成下面这样。

class MyReactComponent extends React.Component {}

export default connect(mapStateToProps, mapDispatchToProps)(MyReactComponent);

有了装饰器,就可以改写上面的代码。

@connect(mapStateToProps, mapDispatchToProps)
export default class MyReactComponent extends React.Component {}

相对来说,后一种写法看上去更容易理解。

2. 方法的装饰

装饰器不仅可以装饰类,还可以装饰类的属性。

class Person {
  @readonly
  name() { return `${this.first} ${this.last}` }
}

上面代码中,装饰器readonly用来装饰“类”的name方法。

装饰器函数readonly一共可以接受三个参数。

//装饰器(readonly)会修改属性的描述对象(descriptor),然后被修改的描述对象再用来定义属性。

function readonly(target, name, descriptor){
  // descriptor对象原来的值如下
  // {
  //   value: specifiedFunction,
  //   enumerable: false,
  //   configurable: true,
  //   writable: true
  // };
  descriptor.writable = false;
  return descriptor;
}

readonly(Person.prototype, 'name', descriptor);
// 类似于
Object.defineProperty(Person.prototype, 'name', descriptor);

装饰器第一个参数是类的原型对象,上例是Person.prototype(这是原型),装饰器的本意是要“装饰”类的实例,但是这个时候实例还没生成,所以只能去装饰原型(这不同于类的装饰,那种情况时target参数指的是类本身);第二个参数是所要装饰的属性名,第三个参数是该属性的描述对象。

另外,上面代码说明,装饰器(readonly)会修改属性的描述对象(descriptor),然后被修改的描述对象再用来定义属性。

下面是另一个例子,修改属性描述对象的enumerable属性,使得该属性不可遍历。

class Person {
  @nonenumerable
  get kidCount() { return this.children.length; }
}

function nonenumerable(target, name, descriptor) {
  descriptor.enumerable = false;
  return descriptor;
}

下面的@log装饰器,可以起到输出日志的作用。

class Math {
  @log
  add(a, b) {
    return a + b;
  }
}

function log(target, name, descriptor) {
  var oldValue = descriptor.value;

  descriptor.value = function() {
    console.log(`Calling ${name} with`, arguments);
    return oldValue.apply(this, arguments);
  };

  return descriptor;
}

const math = new Math();

// passed parameters should get logged now
math.add(2, 4);

上面代码中,@log装饰器的作用就是在执行原始的操作之前,执行一次console.log,从而达到输出日志的目的。

装饰器有注释的作用。

@testable
class Person {
  @readonly
  @nonenumerable
  name() { return `${this.first} ${this.last}` }
}

从上面代码中,我们一眼就能看出,Person类是可测试的,而name方法是只读和不可枚举的。

下面是使用 Decorator 写法的组件,看上去一目了然。

@Component({
  tag: 'my-component',
  styleUrl: 'my-component.scss'
})
export class MyComponent {
  @Prop() first: string;
  @Prop() last: string;
  @State() isVisible: boolean = true;

  render() {
    return (
      <p>Hello, my name is {this.first} {this.last}</p>
    );
  }
}

如果同一个方法有多个装饰器,会像剥洋葱一样,先从外到内进入,然后由内向外执行。

function dec(id){
  console.log('evaluated', id);
  return (target, property, descriptor) => console.log('executed', id);
}

//先从外到内进入,然后由内向外执行
class Example {
    @dec(1)
    @dec(2)
    method(){}
}
// evaluated 1
// evaluated 2
// executed 2
// executed 1

上面代码中,外层装饰器@dec(1)先进入,但是内层装饰器@dec(2)先执行。

除了注释,装饰器还能用来类型检查。所以,对于类来说,这项功能相当有用。从长期来看,它将是 JavaScript 代码静态分析的重要工具。

3. 为什么装饰器不能用于函数?

装饰器只能用于类和类的方法,不能用于函数,因为存在函数提升

采用function命令(即 function f() {})声明函数时,整个函数会像变量声明一样,被提升到代码头部。所以后声明的函数f因为函数提升先声明了,所以被前面声明的函数覆盖。

var counter = 0;

var add = function () {
  counter++;
};

@add
function foo() {
}

上面的代码,意图是执行后counter等于 1,但是实际上结果是counter等于 0。因为函数提升,使得实际执行的代码是下面这样。

//变量提升
var counter;
var add;

//函数提升
@add
function foo() {
}

counter = 0;

add = function () {
  counter++;
};

下面是另一个例子。

var readOnly = require("some-decorator");

@readOnly
function foo() {
}

上面代码也有问题,因为实际执行是下面这样。

var readOnly;

@readOnly
function foo() {
}

readOnly = require("some-decorator");

总之,由于存在函数提升,使得装饰器不能用于函数。类是不会提升的,所以就没有这方面的问题。

另一方面,如果一定要装饰函数,可以采用高阶函数的形式直接执行。

function doSomething(name) {
  console.log('Hello, ' + name);
}

function loggingDecorator(wrapped) {
  return function() {
    console.log('Starting');
    const result = wrapped.apply(this, arguments);
    console.log('Finished');
    return result;
  }
}

const wrapped = loggingDecorator(doSomething);

4. core-decorators.js

core-decorators.js是一个第三方模块,提供了几个常见的装饰器,通过它可以更好地理解装饰器。

(1)@autobind

<u>autobind装饰器使得方法中的this对象,绑定原始对象。

import { autobind } from 'core-decorators';

class Person {
  @autobind
  getPerson() {
    return this;
  }
}

let person = new Person();
let getPerson = person.getPerson;

getPerson() === person;
// true

(2)@readonly

readonly装饰器使得属性或方法不可写。

import { readonly } from 'core-decorators';

class Meal {
  @readonly
  entree = 'steak';
}

var dinner = new Meal();
dinner.entree = 'salmon';
// Cannot assign to read only property 'entree' of [object Object]

(3)@override

override装饰器检查子类的方法,是否正确覆盖了父类的同名方法,如果不正确会报错。

import { override } from 'core-decorators';

class Parent {
  speak(first, second) {}
}

class Child extends Parent {
  @override
  speak() {}
  // SyntaxError: Child#speak() does not properly override Parent#speak(first, second)
}

// or

class Child extends Parent {
  @override
  speaks() {}
  // SyntaxError: No descriptor matching Child#speaks() was found on the prototype chain.
  //
  //   Did you mean "speak"?
}

(4)@deprecate (别名@deprecated)

deprecatedeprecated装饰器在控制台显示一条警告,表示该方法将废除。

import { deprecate } from 'core-decorators';

class Person {
  @deprecate
  facepalm() {}

  @deprecate('We stopped facepalming')
  facepalmHard() {}

  @deprecate('We stopped facepalming', { url: 'http://knowyourmeme.com/memes/facepalm' })
  facepalmHarder() {}
}

let person = new Person();

person.facepalm();
// DEPRECATION Person#facepalm: This function will be removed in future versions.

person.facepalmHard();
// DEPRECATION Person#facepalmHard: We stopped facepalming

person.facepalmHarder();
// DEPRECATION Person#facepalmHarder: We stopped facepalming
//
//     See http://knowyourmeme.com/memes/facepalm for more details.
//

(5)@suppressWarnings

suppressWarnings装饰器抑制deprecated装饰器导致的console.warn()调用。但是,异步代码发出的调用除外。

import { suppressWarnings } from 'core-decorators';

class Person {
  @deprecated
  facepalm() {}

  @suppressWarnings
  facepalmWithoutWarning() {
    this.facepalm();
  }
}

let person = new Person();

person.facepalmWithoutWarning();
// no warning is logged

5. 使用装饰器实现自动发布事件

我们可以使用装饰器,使得对象的方法被调用时,自动发出一个事件。

const postal = require("postal/lib/postal.lodash");

export default function publish(topic, channel) {
  const channelName = channel || '/';
  const msgChannel = postal.channel(channelName);
  msgChannel.subscribe(topic, v => {
    console.log('频道: ', channelName);
    console.log('事件: ', topic);
    console.log('数据: ', v);
  });

  return function(target, name, descriptor) {
    const fn = descriptor.value;

    descriptor.value = function() {
      let value = fn.apply(this, arguments);
      msgChannel.publish(topic, value);
    };
  };
}

上面代码定义了一个名为publish的装饰器,它通过改写descriptor.value,使得原方法被调用时,会自动发出一个事件。它使用的事件“发布/订阅”库是Postal.js

它的用法如下。

// index.js
import publish from './publish';

class FooComponent {
  @publish('foo.some.message', 'component')
  someMethod() {
    return { my: 'data' };
  }
  @publish('foo.some.other')
  anotherMethod() {
    // ...
  }
}

let foo = new FooComponent();

foo.someMethod();
foo.anotherMethod();

以后,只要调用someMethod或者anotherMethod,就会自动发出一个事件。

$ bash-node index.js
频道:  component
事件:  foo.some.message
数据:  { my: 'data' }

频道:  /
事件:  foo.some.other
数据:  undefined

6. Mixin

在装饰器的基础上,可以实现Mixin模式。所谓Mixin模式,就是对象继承的一种替代方案,中文译为“混入”(mix in),意为在一个对象之中混入另外一个对象的方法。

请看下面的例子。

const Foo = {
  foo() { console.log('foo') }
};

class MyClass {}

Object.assign(MyClass.prototype, Foo);

let obj = new MyClass();
obj.foo() // 'foo'

上面代码之中,对象Foo有一个foo方法,通过Object.assign方法,可以将foo方法“混入”MyClass类,导致MyClass的实例obj对象都具有foo方法。这就是“混入”模式的一个简单实现。

下面,我们部署一个通用脚本mixins.js,将 Mixin 写成一个装饰器。

export function mixins(...list) {
  return function (target) {
    Object.assign(target.prototype, ...list);
  };
}

然后,就可以使用上面这个装饰器,为类“混入”各种方法。

import { mixins } from './mixins';

const Foo = {
  foo() { console.log('foo') }
};

@mixins(Foo)
class MyClass {}

let obj = new MyClass();
obj.foo() // "foo"

通过mixins这个装饰器,实现了在MyClass类上面“混入”Foo对象的foo方法。

不过,上面的方法会改写MyClass类的prototype对象,如果不喜欢这一点,也可以通过类的继承实现 Mixin。

class MyClass extends MyBaseClass {
  /* ... */
}

上面代码中,MyClass继承了MyBaseClass。如果我们想在MyClass里面“混入”一个foo方法,一个办法是在MyClassMyBaseClass之间插入一个混入类,这个类具有foo方法,并且继承了MyBaseClass的所有方法,然后MyClass再继承这个类。

let MyMixin = (superclass) => class extends superclass {
  foo() {
    console.log('foo from MyMixin');
  }
};

上面代码中,MyMixin是一个混入类生成器,接受superclass作为参数,然后返回一个继承superclass的子类,该子类包含一个foo方法。

接着,目标类再去继承这个混入类,就达到了“混入”foo方法的目的。

class MyClass extends MyMixin(MyBaseClass) {
  /* ... */
}

let c = new MyClass();
c.foo(); // "foo from MyMixin"

如果需要“混入”多个方法,就生成多个混入类。

class MyClass extends Mixin1(Mixin2(MyBaseClass)) {
  /* ... */
}

这种写法的一个好处,是可以调用super,因此可以避免在“混入”过程中覆盖父类的同名方法。

let Mixin1 = (superclass) => class extends superclass {
  foo() {
    console.log('foo from Mixin1');
    if (super.foo) super.foo();
  }
};

let Mixin2 = (superclass) => class extends superclass {
  foo() {
    console.log('foo from Mixin2');
    if (super.foo) super.foo();
  }
};

class S {
  foo() {
    console.log('foo from S');
  }
}

class C extends Mixin1(Mixin2(S)) {
  foo() {
    console.log('foo from C');
    super.foo();
  }
}

上面代码中,每一次混入发生时,都调用了父类的super.foo方法,导致父类的同名方法没有被覆盖,行为被保留了下来。

new C().foo()
// foo from C
// foo from Mixin1
// foo from Mixin2
// foo from S

7. Trait

Trait 也是一种装饰器,效果与 Mixin 类似,但是提供更多功能,比如防止同名方法的冲突、排除混入某些方法、为混入的方法起别名等等

下面采用traits-decorator这个第三方模块作为例子。这个模块提供的traits装饰器,不仅可以接受对象,还可以接受 ES6 类作为参数。

import { traits } from 'traits-decorator';

class TFoo {
  foo() { console.log('foo') }
}

const TBar = {
  bar() { console.log('bar') }
};

@traits(TFoo, TBar)
class MyClass { }

let obj = new MyClass();
obj.foo() // foo
obj.bar() // bar

上面代码中,通过traits装饰器,在MyClass类上面“混入”了TFoo类的foo方法和TBar对象的bar方法。

Trait 不允许“混入”同名方法。

import { traits } from 'traits-decorator';

class TFoo {
  foo() { console.log('foo') }
}

const TBar = {
  bar() { console.log('bar') },
  foo() { console.log('foo') }
};

@traits(TFoo, TBar)
class MyClass { }
// 报错
// throw new Error('Method named: ' + methodName + ' is defined twice.');
//        ^
// Error: Method named: foo is defined twice.

上面代码中,TFooTBar都有foo方法,结果traits装饰器报错。

一种解决方法是排除TBarfoo方法。

import { traits, excludes } from 'traits-decorator';

class TFoo {
  foo() { console.log('foo') }
}

const TBar = {
  bar() { console.log('bar') },
  foo() { console.log('foo') }
};

@traits(TFoo, TBar::excludes('foo'))
class MyClass { }

let obj = new MyClass();
obj.foo() // foo
obj.bar() // bar

上面代码使用绑定运算符(::)在TBar上排除foo方法,混入时就不会报错了。

另一种方法是为TBarfoo方法起一个别名。

import { traits, alias } from 'traits-decorator';

class TFoo {
  foo() { console.log('foo') }
}

const TBar = {
  bar() { console.log('bar') },
  foo() { console.log('foo') }
};

@traits(TFoo, TBar::alias({foo: 'aliasFoo'}))
class MyClass { }

let obj = new MyClass();
obj.foo() // foo
obj.aliasFoo() // foo
obj.bar() // bar

上面代码为TBarfoo方法起了别名aliasFoo,于是MyClass也可以混入TBarfoo方法了。

aliasexcludes方法,可以结合起来使用。

@traits(TExample::excludes('foo','bar')::alias({baz:'exampleBaz'}))
class MyClass {}

上面代码排除了TExamplefoo方法和bar方法,为baz方法起了别名exampleBaz

as方法则为上面的代码提供了另一种写法。

@traits(TExample::as({excludes:['foo', 'bar'], alias: {baz: 'exampleBaz'}}))
class MyClass {}