欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Spring Boot如何使用HikariCP连接池详解

程序员文章站 2024-02-27 14:19:57
前言 springboot让java开发更加美好,更加简洁,更加简单。spring boot 2.x中使用hikaricp作为默认的数据连接池。 hikaricp使用ja...

前言

springboot让java开发更加美好,更加简洁,更加简单。spring boot 2.x中使用hikaricp作为默认的数据连接池。 hikaricp使用javassist字节码操作库来实现动态代理,优化并精简了字节码,同时内部使用 com.zaxxer.hikari.util.fastlist 代替arraylist、使用了更好的并发集合类 com.zaxxer.hikari.util.concurrentbag ,“号称”是目前最快的数据库连接池。

下面话不多说了,来一起看看详细的介绍吧

基本使用

在spring boot 2.x中使用hikaricp十分简单,只需引入依赖 implementation 'org.springframework.boot:spring-boot-starter-jdbc'

pluginmanagement {
	repositories {
		gradlepluginportal()
	}
}
rootproject.name = 'datasource-config'

plugins {
	id 'org.springframework.boot' version '2.1.3.release'
	id 'java'
}

apply plugin: 'io.spring.dependency-management'

group = 'spring-boot-guides'
version = '0.0.1-snapshot'
sourcecompatibility = '1.8'

repositories {
	mavencentral()
}

dependencies {
	implementation 'org.springframework.boot:spring-boot-starter-jdbc'
	runtimeonly 'com.h2database:h2'
	testimplementation 'org.springframework.boot:spring-boot-starter-test'
}

配置文件如下:

spring:
 datasource:
 url: jdbc:h2:mem:demodb
 username: sa
 password:
 hikari: # https://github.com/brettwooldridge/hikaricp (uses milliseconds for all time values)
 maximumpoolsize: 10
 minimumidle: 2
 idletimeout: 600000
 connectiontimeout: 30000
 maxlifetime: 1800000

关于连接池的具体配置参数详见 hikaricp

示例代码如下:

package springbootguides.datasourceconfig;

import org.springframework.beans.factory.annotation.autowired;
import org.springframework.boot.commandlinerunner;
import org.springframework.boot.springapplication;
import org.springframework.boot.autoconfigure.springbootapplication;

import javax.sql.datasource;
import java.sql.connection;

@springbootapplication
public class datasourceconfigapplication implements commandlinerunner {

	@autowired
	private datasource datasource;

	@override
	public void run(string... args) throws exception {
		try(connection conn = datasource.getconnection()) {
			system.out.println(conn);
		}
	}

	public static void main(string[] args) {
		springapplication.run(datasourceconfigapplication.class, args);
	}

}

实现原理

spring boot使用如下方式整合hikaricp:入口是 org.springframework.boot.autoconfigure.jdbc.datasourceautoconfiguration ,通过 org.springframework.boot.autoconfigure.jdbc.datasourceconfiguration.hikari 中的 @bean 方式创建 com.zaxxer.hikari.hikaridatasource

/**
	 * hikari datasource configuration.
	 */
	@conditionalonclass(hikaridatasource.class)
	@conditionalonmissingbean(datasource.class)
	@conditionalonproperty(name = "spring.datasource.type", havingvalue = "com.zaxxer.hikari.hikaridatasource", matchifmissing = true)
	static class hikari {

		@bean
		@configurationproperties(prefix = "spring.datasource.hikari")
		public hikaridatasource datasource(datasourceproperties properties) {
			hikaridatasource datasource = createdatasource(properties,
					hikaridatasource.class);
			if (stringutils.hastext(properties.getname())) {
				datasource.setpoolname(properties.getname());
			}
			return datasource;
		}

	}

@configurationproperties(prefix = "spring.datasource.hikari") 会自动把 spring.datasource.hikari.* 相关的连接池配置信息注入到创建的hikaridatasource实例中。

hikaricp的监控和遥测

因为在我们的微服务体系中使用的监控系统是prometheus,这里以prometheus为例。

注意spring boot 2.0对spring boot 1.x的metrics进行了重构,不再向后兼容,主要是在spring-boot-acutator中使用了micrometer,支持了更多的监控系统:atlas、datadog、ganglia、graphite、influx、jmx、newrelic、prometheus、signalfx、statsd、wavefront。spring boot 2.0的metrics对比spring boot 1.x除了引入micrometer外,更大的体现是支持了tag,这也说明prometheus、influx等支持tag的时序监控数据模型的监控系统已经成为主流。

在前面示例中的build.gradle中加入如下依赖:

implementation 'org.springframework.boot:spring-boot-starter-web'
implementation 'org.springframework.boot:spring-boot-starter-actuator'
implementation 'io.micrometer:micrometer-registry-prometheus'

配置文件applycation.yaml中加入对actuator的配置:

management:
 endpoints:
 web:
  exposure:
  include: "health,info,prometheus"
 server:
 port: 8079
 servlet:
  context-path: /

注意这里引入了web和actuator依赖,通过配置 management.server.port 指定actuator的web端点为8089端口,通过 management.endpoints.include 对外开放 /actuator/prometheus ,在引入 io.micrometer:micrometer-registry-prometheus 依赖之后,端点 /actuator/prometheus 当即生效。

curl http://localhost:8079/actuator/prometheus | grep hikari
# type hikaricp_connections_acquire_seconds summary
hikaricp_connections_acquire_seconds_count{pool="hikaripool-1",} 3.0
hikaricp_connections_acquire_seconds_sum{pool="hikaripool-1",} 0.001230082
# help hikaricp_connections_acquire_seconds_max connection acquire time
# type hikaricp_connections_acquire_seconds_max gauge
hikaricp_connections_acquire_seconds_max{pool="hikaripool-1",} 0.0
# help hikaricp_connections_min min connections
# type hikaricp_connections_min gauge
hikaricp_connections_min{pool="hikaripool-1",} 2.0
# type hikaricp_connections_timeout_total counter
hikaricp_connections_timeout_total{pool="hikaripool-1",} 0.0
# help hikaricp_connections_pending pending threads
# type hikaricp_connections_pending gauge
hikaricp_connections_pending{pool="hikaripool-1",} 0.0
# help hikaricp_connections_usage_seconds connection usage time
# type hikaricp_connections_usage_seconds summary
hikaricp_connections_usage_seconds_count{pool="hikaripool-1",} 3.0
hikaricp_connections_usage_seconds_sum{pool="hikaripool-1",} 0.06
# help hikaricp_connections_usage_seconds_max connection usage time
# type hikaricp_connections_usage_seconds_max gauge
hikaricp_connections_usage_seconds_max{pool="hikaripool-1",} 0.0
# help hikaricp_connections_max max connections
# type hikaricp_connections_max gauge
hikaricp_connections_max{pool="hikaripool-1",} 10.0
# help hikaricp_connections total connections
# type hikaricp_connections gauge
hikaricp_connections{pool="hikaripool-1",} 2.0
# help hikaricp_connections_creation_seconds_max connection creation time
# type hikaricp_connections_creation_seconds_max gauge
hikaricp_connections_creation_seconds_max{pool="hikaripool-1",} 0.0
# help hikaricp_connections_creation_seconds connection creation time
# type hikaricp_connections_creation_seconds summary
hikaricp_connections_creation_seconds_count{pool="hikaripool-1",} 1.0
hikaricp_connections_creation_seconds_sum{pool="hikaripool-1",} 0.001
# help hikaricp_connections_idle idle connections
# type hikaricp_connections_idle gauge
hikaricp_connections_idle{pool="hikaripool-1",} 2.0
# help hikaricp_connections_active active connections
# type hikaricp_connections_active gauge
hikaricp_connections_active{pool="hikaripool-1",} 0.0

参考

hikaricp

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。