Java8新特性lambda表达式有什么用(用法实例)
我们期待了很久lambda为java带来闭包的概念,但是如果我们不在集合中使用它的话,就损失了很大价值。现有接口迁移成为lambda风格的问题已经通过default methods解决了,在这篇文章将深入解析java集合里面的批量数据操作(bulk operation),解开lambda最强作用的神秘面纱。
1.关于jsr335
jsr是java specification requests的缩写,意思是java 规范请求,java 8 版本的主要改进是 lambda 项目(jsr 335),其目的是使 java 更易于为多核处理器编写代码。jsr 335=lambda表达式+接口改进(默认方法)+批量数据操作。加上前面两篇,我们已是完整的学习了jsr335的相关内容了。
2.外部vs内部迭代
以前java集合是不能够表达内部迭代的,而只提供了一种外部迭代的方式,也就是for或者while循环。
list persons = aslist(new person("joe"), new person("jim"), new person("john"));
for (person p : persons) {
p.setlastname("doe");
}
上面的例子是我们以前的做法,也就是所谓的外部迭代,循环是固定的顺序循环。在现在多核的时代,如果我们想并行循环,不得不修改以上代码。效率能有多大提升还说定,且会带来一定的风险(线程安全问题等等)。
要描述内部迭代,我们需要用到lambda这样的类库,下面利用lambda和collection.foreach重写上面的循环
现在是由jdk 库来控制循环了,我们不需要关心last name是怎么被设置到每一个person对象里面去的,库可以根据运行环境来决定怎么做,并行,乱序或者懒加载方式。这就是内部迭代,客户端将行为p.setlastname当做数据传入api里面。
内部迭代其实和集合的批量操作并没有密切的联系,借助它我们感受到语法表达上的变化。真正有意思的和批量操作相关的是新的流(stream)api。新的java.util.stream包已经添加进jdk 8了。
3.stream api
流(stream)仅仅代表着数据流,并没有数据结构,所以他遍历完一次之后便再也无法遍历(这点在编程时候需要注意,不像collection,遍历多少次里面都还有数据),它的来源可以是collection、array、io等等。
3.1中间与终点方法
流作用是提供了一种操作大数据接口,让数据操作更容易和更快。它具有过滤、映射以及减少遍历数等方法,这些方法分两种:中间方法和终端方法,“流”抽象天生就该是持续的,中间方法永远返回的是stream,因此如果我们要获取最终结果的话,必须使用终点操作才能收集流产生的最终结果。区分这两个方法是看他的返回值,如果是stream则是中间方法,否则是终点方法。具体请参照stream的api。
简单介绍下几个中间方法(filter、map)以及终点方法(collect、sum)
3.1.1filter
在数据流中实现过滤功能是首先我们可以想到的最自然的操作了。stream接口暴露了一个filter方法,它可以接受表示操作的predicate实现来使用定义了过滤条件的lambda表达式。
list persons = …
stream personsover18 = persons.stream().filter(p -> p.getage() > 18);//过滤18岁以上的人
3.1.2map
假使我们现在过滤了一些数据,比如转换对象的时候。map操作允许我们执行一个function的实现(function<t,r>的泛型t,r分别表示执行输入和执行结果),它接受入参并返回。首先,让我们来看看怎样以匿名内部类的方式来描述它:
stream adult= persons
.stream()
.filter(p -> p.getage() > 18)
.map(new function() {
@override
public adult apply(person person) {
return new adult(person);//将大于18岁的人转为成年人
}
});
现在,把上述例子转换成使用lambda表达式的写法:
stream map = persons.stream()
.filter(p -> p.getage() > 18)
.map(person -> new adult(person));
3.1.3count
count方法是一个流的终点方法,可使流的结果最终统计,返回int,比如我们计算一下满足18岁的总人数:
int countofadult=persons.stream()
.filter(p -> p.getage() > 18)
.map(person -> new adult(person))
.count();
3.1.4collect
collect方法也是一个流的终点方法,可收集最终的结果
list adultlist= persons.stream()
.filter(p -> p.getage() > 18)
.map(person -> new adult(person))
.collect(collectors.tolist());
或者,如果我们想使用特定的实现类来收集结果:
list adultlist = persons
.stream()
.filter(p -> p.getage() > 18)
.map(person -> new adult(person))
.collect(collectors.tocollection(arraylist::new));
篇幅有限,其他的中间方法和终点方法就不一一介绍了,看了上面几个例子,大家明白这两种方法的区别即可,后面可根据需求来决定使用。
3.2顺序流与并行流
每个stream都有两种模式:顺序执行和并行执行。
顺序流:
list <person> people = list.getstream.collect(collectors.tolist());
并行流:
list <person> people = list.getstream.parallel().collect(collectors.tolist());
顾名思义,当使用顺序方式去遍历时,每个item读完后再读下一个item。而使用并行去遍历时,数组会被分成多个段,其中每一个都在不同的线程中处理,然后将结果一起输出。
3.2.1并行流原理:
list originallist = somedata;
split1 = originallist(0, mid);//将数据分小部分
split2 = originallist(mid,end);
new runnable(split1.process());//小部分执行操作
new runnable(split2.process());
list revisedlist = split1 + split2;//将结果合并
3.2.2顺序与并行性能测试对比
如果是多核机器,理论上并行流则会比顺序流快上一倍,下面是测试代码
long t0 = system.nanotime();
//初始化一个范围100万整数流,求能被2整除的数字,toarray()是终点方法
int a[]=intstream.range(0, 1_000_000).filter(p -> p % 2==0).toarray();
long t1 = system.nanotime();
//和上面功能一样,这里是用并行流来计算
int b[]=intstream.range(0, 1_000_000).parallel().filter(p -> p % 2==0).toarray();
long t2 = system.nanotime();
//我本机的结果是serial: 0.06s, parallel 0.02s,证明并行流确实比顺序流快
system.out.printf("serial: %.2fs, parallel %.2fs%n", (t1 - t0) * 1e-9, (t2 - t1) * 1e-9);
3.3关于folk/join框架
应用硬件的并行性在java 7就有了,那就是 java.util.concurrent 包的新增功能之一是一个 fork-join 风格的并行分解框架,同样也很强大高效,有兴趣的同学去研究,这里不详谈了,相比stream.parallel()这种方式,我更倾向于后者。
4.总结
如果没有lambda,stream用起来相当别扭,他会产生大量的匿名内部类,比如上面的3.1.2map例子,如果没有default method,集合框架更改势必会引起大量的改动,所以lambda+default method使得jdk库更加强大,以及灵活,stream以及集合框架的改进便是最好的证明。