TrainData2algorthms
程序员文章站
2024-02-26 22:10:28
...
1.先把数据集进行读取
import pandas as pd
import matplotlib.pyplot as plt
with open('sourcedata2.csv')as f:
df=pd.read_csv(f,header=0)
df
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
time | RollingSpeed | RollingForce | EntranceThickness | OutletThickness | Post-tensionForce | Pre-tensionForce | Vibration | |
---|---|---|---|---|---|---|---|---|
0 | 18:35:56.72 | 2.1168 | 16360 | 0.011031 | 0.004393 | 0.000 | 0.00 | 0.113 |
1 | 18:35:57.58 | 2.1413 | 25590000 | 0.010997 | 0.004457 | 4.698 | 0.00 | 0.056 |
2 | 18:35:59.08 | 2.1762 | 26870000 | 0.010958 | 0.004502 | 9.316 | 0.00 | 0.052 |
3 | 18:36:00.37 | 2.1728 | 27310000 | 0.010955 | 0.004313 | 7.353 | 16.12 | 0.050 |
4 | 18:36:03.38 | 2.1765 | 27680000 | 0.010947 | 0.004321 | 7.178 | 14.50 | 0.052 |
5 | 18:36:05.09 | 2.1680 | 27940000 | 0.011038 | 0.004295 | 7.784 | 12.53 | 0.034 |
6 | 18:36:07.45 | 2.1492 | 27630000 | 0.011050 | 0.004345 | 7.746 | 12.99 | 0.063 |
7 | 18:36:11.53 | 2.1469 | 27230000 | 0.010986 | 0.004423 | 7.864 | 13.43 | 0.094 |
8 | 18:36:16.68 | 2.1963 | 27330000 | 0.011060 | 0.004481 | 7.398 | 13.36 | 0.081 |
9 | 18:36:18.61 | 2.1896 | 26980000 | 0.011050 | 0.004526 | 7.623 | 12.17 | 0.050 |
10 | 18:36:21.18 | 2.2060 | 26830000 | 0.011009 | 0.004546 | 8.426 | 15.38 | 0.065 |
11 | 18:36:22.69 | 2.2119 | 27270000 | 0.011033 | 0.004520 | 7.457 | 13.13 | 0.090 |
12 | 18:36:23.97 | 2.2040 | 27120000 | 0.010981 | 0.004513 | 7.608 | 11.52 | 0.062 |
13 | 18:36:26.12 | 2.1947 | 27550000 | 0.011029 | 0.004463 | 8.150 | 12.07 | 0.044 |
14 | 18:36:29.55 | 2.1801 | 27300000 | 0.010957 | 0.004483 | 7.410 | 14.78 | 0.032 |
15 | 18:36:31.91 | 2.1771 | 27230000 | 0.011039 | 0.004496 | 9.115 | 13.25 | 0.050 |
16 | 18:36:36.64 | 2.1487 | 27540000 | 0.010938 | 0.004494 | 7.223 | 13.15 | 0.024 |
17 | 18:36:39.21 | 2.1390 | 27580000 | 0.010720 | 0.004462 | 8.005 | 15.70 | 0.026 |
18 | 18:36:43.07 | 2.1655 | 28190000 | 0.010941 | 0.004474 | 6.874 | 11.99 | 0.054 |
19 | 18:36:51.01 | 2.1704 | 27640000 | 0.011107 | 0.004507 | 7.239 | 13.12 | 0.031 |
20 | 18:36:54.02 | 2.1745 | 27550000 | 0.011176 | 0.004547 | 7.681 | 13.47 | 0.060 |
21 | 18:37:00.24 | 2.2496 | 26380000 | 0.011207 | 0.004855 | 8.709 | 14.29 | 0.043 |
22 | 18:37:02.82 | 2.2178 | 26720000 | 0.011256 | 0.004795 | 7.886 | 13.03 | 0.051 |
23 | 18:37:05.18 | 2.1716 | 26840000 | 0.011273 | 0.004778 | 8.051 | 11.99 | 0.041 |
24 | 18:37:09.90 | 2.1326 | 26920000 | 0.011255 | 0.004772 | 7.511 | 12.42 | 0.034 |
25 | 18:37:13.12 | 2.0962 | 26920000 | 0.011222 | 0.004755 | 7.942 | 14.49 | 0.103 |
26 | 18:37:19.13 | 2.0932 | 26980000 | 0.011250 | 0.004734 | 7.409 | 12.75 | 0.005 |
27 | 18:37:26.64 | 2.0942 | 27140000 | 0.011221 | 0.004751 | 8.116 | 12.67 | 0.005 |
28 | 18:37:29.21 | 2.0957 | 27360000 | 0.011238 | 0.004729 | 7.147 | 13.37 | 0.009 |
29 | 18:37:31.79 | 2.0925 | 26930000 | 0.011235 | 0.004761 | 7.634 | 12.88 | 0.002 |
30 | 18:37:32.86 | 2.0994 | 27210000 | 0.011311 | 0.004763 | 7.907 | 13.25 | NaN |
31 | 18:37:34.36 | 2.0975 | 27080000 | 0.011286 | 0.004786 | 6.594 | 13.94 | NaN |
32 | 18:37:36.94 | 2.0948 | 26810000 | 0.011304 | 0.004779 | 7.913 | 13.54 | NaN |
33 | 18:37:45.73 | 2.0981 | 26520000 | 0.011316 | 0.004875 | 7.796 | 12.86 | NaN |
34 | 18:37:49.60 | 2.0885 | 26280000 | 0.011334 | 0.004884 | 7.628 | 13.52 | NaN |
35 | 18:37:52.17 | 2.0939 | 26350000 | 0.011173 | 0.004885 | 7.024 | 13.23 | NaN |
36 | 18:37:53.67 | 2.0945 | 26240000 | 0.011148 | 0.004885 | 7.785 | 10.98 | NaN |
37 | 18:37:55.18 | 2.0875 | 28590000 | 0.010276 | 0.004455 | 0.000 | 12.96 | NaN |
38 | 18:37:56.08 | 2.0772 | 29270000 | 0.010272 | 0.004367 | 0.000 | 11.81 | NaN |
39 | 18:37:57.97 | 2.0788 | 31680000 | 0.010272 | 0.003505 | 0.000 | 12.80 | NaN |
40 | 18:37:58.53 | 2.1316 | 19210000 | 0.010272 | 0.003232 | 0.000 | 0.00 | NaN |
41 | 18:38:02.04 | 0.5007 | 60390 | 0.010273 | 0.003830 | 0.000 | 0.00 | NaN |
2进行数据的可视化分析
先看每个变量和振动之间的关系图
X=df[df.columns[1:6]]
y=df['Vibration']
plt.figure()
f,ax1=plt.subplots()
for i in range(1,7):
number=320+i
ax1.locator_params(nbins=3)
ax1=plt.subplot(number)
plt.title(list(df)[i])
ax1.scatter(df[df.columns[i]],y)
plt.tight_layout(pad=0.4,w_pad=0.5,h_pad=1.0)
plt.show()
<matplotlib.figure.Figure at 0x7fd52c222b70>
变量之间的关系图绘制
入口厚度和出口厚度
fig=plt.figure()
ax=fig.add_subplot(111)
plt.axis([0.010,0.012,0.003,0.005])
ax.set_xlabel('EntranceThickness')
ax.set_ylabel('OutletThickness')
ax.scatter(df['EntranceThickness'],df['OutletThickness'])
plt.show()
这些数据也没有显示出较好的相关关系,波动还是比较明显
轧制力和轧值速度
fig=plt.figure()
ax=fig.add_subplot(111)
plt.axis([2.0,2.3,25000000,30000000])
ax.set_xlabel("RollingSpeed")
ax.set_ylabel("RollingForce")
ax.scatter(df['RollingSpeed'],df['RollingForce'])
plt.show()
选取坐标范围后,画出数据的散点图.
没有明显的线性关系.
3.绘制热力图矩阵(hotmap)
也就是相关系数矩阵
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
drop_elements=['time','Vibration']
train=train.drop(drop_elements,axis=1)
plt.figure(figsize=(8,6))
plt.title("Pearson Correlation of Features",y=1.0,size=15)
sns.heatmap(train.astype(float).corr(),linewidth=0.1,vmax=0.1,
square=True,linecolor='white',annot=True)
plt.xticks(rotation=90)
plt.yticks(rotation=360)
plt.show()
这个热力图还是可以看出一些问题,例如 轧制力和前向张力的相关性较高,出口厚度和入口厚度的相关性也比较高.
3.训练算法模型
选择模型架构:
我们需要建立的是一个六个输入,一个输出的前向神经网络.
神经网络是一个双隐层,四层深度神经网络 6x10x5x1:
df=df[0:30]
df
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
time | RollingSpeed | RollingForce | EntranceThickness | OutletThickness | Post-tensionForce | Pre-tensionForce | Vibration | |
---|---|---|---|---|---|---|---|---|
0 | 18:35:56.72 | 2.1168 | 16360 | 0.011031 | 0.004393 | 0.000 | 0.00 | 0.113 |
1 | 18:35:57.58 | 2.1413 | 25590000 | 0.010997 | 0.004457 | 4.698 | 0.00 | 0.056 |
2 | 18:35:59.08 | 2.1762 | 26870000 | 0.010958 | 0.004502 | 9.316 | 0.00 | 0.052 |
3 | 18:36:00.37 | 2.1728 | 27310000 | 0.010955 | 0.004313 | 7.353 | 16.12 | 0.050 |
4 | 18:36:03.38 | 2.1765 | 27680000 | 0.010947 | 0.004321 | 7.178 | 14.50 | 0.052 |
5 | 18:36:05.09 | 2.1680 | 27940000 | 0.011038 | 0.004295 | 7.784 | 12.53 | 0.034 |
6 | 18:36:07.45 | 2.1492 | 27630000 | 0.011050 | 0.004345 | 7.746 | 12.99 | 0.063 |
7 | 18:36:11.53 | 2.1469 | 27230000 | 0.010986 | 0.004423 | 7.864 | 13.43 | 0.094 |
8 | 18:36:16.68 | 2.1963 | 27330000 | 0.011060 | 0.004481 | 7.398 | 13.36 | 0.081 |
9 | 18:36:18.61 | 2.1896 | 26980000 | 0.011050 | 0.004526 | 7.623 | 12.17 | 0.050 |
10 | 18:36:21.18 | 2.2060 | 26830000 | 0.011009 | 0.004546 | 8.426 | 15.38 | 0.065 |
11 | 18:36:22.69 | 2.2119 | 27270000 | 0.011033 | 0.004520 | 7.457 | 13.13 | 0.090 |
12 | 18:36:23.97 | 2.2040 | 27120000 | 0.010981 | 0.004513 | 7.608 | 11.52 | 0.062 |
13 | 18:36:26.12 | 2.1947 | 27550000 | 0.011029 | 0.004463 | 8.150 | 12.07 | 0.044 |
14 | 18:36:29.55 | 2.1801 | 27300000 | 0.010957 | 0.004483 | 7.410 | 14.78 | 0.032 |
15 | 18:36:31.91 | 2.1771 | 27230000 | 0.011039 | 0.004496 | 9.115 | 13.25 | 0.050 |
16 | 18:36:36.64 | 2.1487 | 27540000 | 0.010938 | 0.004494 | 7.223 | 13.15 | 0.024 |
17 | 18:36:39.21 | 2.1390 | 27580000 | 0.010720 | 0.004462 | 8.005 | 15.70 | 0.026 |
18 | 18:36:43.07 | 2.1655 | 28190000 | 0.010941 | 0.004474 | 6.874 | 11.99 | 0.054 |
19 | 18:36:51.01 | 2.1704 | 27640000 | 0.011107 | 0.004507 | 7.239 | 13.12 | 0.031 |
20 | 18:36:54.02 | 2.1745 | 27550000 | 0.011176 | 0.004547 | 7.681 | 13.47 | 0.060 |
21 | 18:37:00.24 | 2.2496 | 26380000 | 0.011207 | 0.004855 | 8.709 | 14.29 | 0.043 |
22 | 18:37:02.82 | 2.2178 | 26720000 | 0.011256 | 0.004795 | 7.886 | 13.03 | 0.051 |
23 | 18:37:05.18 | 2.1716 | 26840000 | 0.011273 | 0.004778 | 8.051 | 11.99 | 0.041 |
24 | 18:37:09.90 | 2.1326 | 26920000 | 0.011255 | 0.004772 | 7.511 | 12.42 | 0.034 |
25 | 18:37:13.12 | 2.0962 | 26920000 | 0.011222 | 0.004755 | 7.942 | 14.49 | 0.103 |
26 | 18:37:19.13 | 2.0932 | 26980000 | 0.011250 | 0.004734 | 7.409 | 12.75 | 0.005 |
27 | 18:37:26.64 | 2.0942 | 27140000 | 0.011221 | 0.004751 | 8.116 | 12.67 | 0.005 |
28 | 18:37:29.21 | 2.0957 | 27360000 | 0.011238 | 0.004729 | 7.147 | 13.37 | 0.009 |
29 | 18:37:31.79 | 2.0925 | 26930000 | 0.011235 | 0.004761 | 7.634 | 12.88 | 0.002 |
# 一些包的引入
from sklearn import datasets, cross_validation, metrics
from sklearn import preprocessing
from tensorflow.contrib import learn
from keras.models import Sequential
from keras.layers import Dense
x=df[df.columns[1:7]]
y=df['Vibration']
x_train,x_test,y_train,y_test=cross_validation.train_test_split(x,y,test_size=0.2)
# 将输入变量进行归一化处理
scaler=preprocessing.StandardScaler()
x_trian=scaler.fit_transform(x_train)
model=Sequential()
model.add(Dense(10,input_dim=6,init='normal',activation='relu'))
model.add(Dense(5,init='normal',activation='relu'))
model.add(Dense(1,init='normal'))
model.compile(loss='mean_squared_error',optimizer='adam')
# 训练模型,查看正确率
model.fit(x_train,y_train,nb_epoch=500,validation_split=0.33,
shuffle=True,verbose=2)
/home/dengshuo/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:8: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(10, input_dim=6, activation="relu", kernel_initializer="normal")`
/home/dengshuo/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:9: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(5, activation="relu", kernel_initializer="normal")`
if __name__ == '__main__':
/home/dengshuo/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:10: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(1, kernel_initializer="normal")`
# Remove the CWD from sys.path while we load stuff.
/home/dengshuo/anaconda3/lib/python3.6/site-packages/keras/models.py:942: UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`.
warnings.warn('The `nb_epoch` argument in `fit` '
Train on 16 samples, validate on 8 samples
Epoch 1/500
- 1s - loss: 6375226.0000 - val_loss: 5214159.0000
Epoch 2/500
- 0s - loss: 4847505.0000 - val_loss: 3922125.0000
Epoch 3/500
- 0s - loss: 3646332.5000 - val_loss: 2923160.0000
Epoch 4/500
- 0s - loss: 2717618.5000 - val_loss: 2159714.7500
Epoch 5/500
- 0s - loss: 2007860.5000 - val_loss: 1594420.0000
Epoch 6/500
- 0s - loss: 1482317.7500 - val_loss: 1154666.0000
Epoch 7/500
- 0s - loss: 1073487.0000 - val_loss: 811432.8750
Epoch 8/500
- 0s - loss: 754388.8750 - val_loss: 546497.8750
Epoch 9/500
- 0s - loss: 508082.7812 - val_loss: 345815.8750
Epoch 10/500
- 0s - loss: 321510.5938 - val_loss: 198714.0938
Epoch 11/500
- 0s - loss: 184750.6875 - val_loss: 96965.6719
Epoch 12/500
- 0s - loss: 90154.6172 - val_loss: 33976.9688
Epoch 13/500
- 0s - loss: 31592.4570 - val_loss: 4241.9888
Epoch 14/500
- 0s - loss: 3945.4534 - val_loss: 2016.1428
Epoch 15/500
- 0s - loss: 1873.0994 - val_loss: 20512.2969
Epoch 16/500
- 0s - loss: 19065.6641 - val_loss: 51329.8047
Epoch 17/500
- 0s - loss: 47713.4180 - val_loss: 85135.9219
Epoch 18/500
- 0s - loss: 79140.1094 - val_loss: 113658.8438
Epoch 19/500
- 0s - loss: 105655.7188 - val_loss: 131461.5312
Epoch 20/500
- 0s - loss: 122205.6016 - val_loss: 136798.5000
Epoch 21/500
- 0s - loss: 127167.0469 - val_loss: 130197.8281
Epoch 22/500
- 0s - loss: 121030.8203 - val_loss: 110119.7500
Epoch 23/500
- 0s - loss: 102365.6562 - val_loss: 89022.8125
Epoch 24/500
- 0s - loss: 82753.4375 - val_loss: 69066.6484
Epoch 25/500
- 0s - loss: 64201.7891 - val_loss: 51627.1367
Epoch 26/500
- 0s - loss: 47989.8242 - val_loss: 37236.5195
Epoch 27/500
- 0s - loss: 34612.2656 - val_loss: 25887.8535
Epoch 28/500
- 0s - loss: 24062.6543 - val_loss: 17334.3555
Epoch 29/500
- 0s - loss: 16111.5479 - val_loss: 11116.8428
Epoch 30/500
- 0s - loss: 10332.0498 - val_loss: 6768.4287
Epoch 31/500
- 0s - loss: 6290.1055 - val_loss: 3850.2249
Epoch 32/500
- 0s - loss: 3577.7085 - val_loss: 1986.2985
Epoch 33/500
- 0s - loss: 1845.3606 - val_loss: 874.1240
Epoch 34/500
- 0s - loss: 811.8243 - val_loss: 281.2087
Epoch 35/500
- 0s - loss: 260.9658 - val_loss: 34.9176
Epoch 36/500
- 0s - loss: 32.2987 - val_loss: 0.0055
Epoch 37/500
- 0s - loss: 0.0045 - val_loss: 0.0055
Epoch 38/500
- 0s - loss: 0.0045 - val_loss: 0.0055
Epoch 39/500
- 0s - loss: 0.0045 - val_loss: 0.0055
Epoch 40/500
- 0s - loss: 0.0045 - val_loss: 0.0055
Epoch 41/500
- 0s - loss: 0.0045 - val_loss: 0.0055
Epoch 42/500
- 0s - loss: 0.0045 - val_loss: 0.0055
Epoch 43/500
- 0s - loss: 0.0045 - val_loss: 0.0055
Epoch 44/500
- 0s - loss: 0.0045 - val_loss: 0.0055
Epoch 45/500
- 0s - loss: 0.0045 - val_loss: 0.0055
Epoch 46/500
- 0s - loss: 0.0045 - val_loss: 0.0055
Epoch 47/500
- 0s - loss: 0.0045 - val_loss: 0.0055
Epoch 48/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 49/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 50/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 51/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 52/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 53/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 54/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 55/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 56/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 57/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 58/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 59/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 60/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 61/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 62/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 63/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 64/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 65/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 66/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 67/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 68/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 69/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 70/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 71/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 72/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 73/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 74/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 75/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 76/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 77/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 78/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 79/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 80/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 81/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 82/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 83/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 84/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 85/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 86/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 87/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 88/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 89/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 90/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 91/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 92/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 93/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 94/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 95/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 96/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 97/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 98/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 99/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 100/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 101/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 102/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 103/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 104/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 105/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 106/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 107/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 108/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 109/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 110/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 111/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 112/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 113/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 114/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 115/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 116/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 117/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 118/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 119/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 120/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 121/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 122/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 123/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 124/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 125/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 126/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 127/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 128/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 129/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 130/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 131/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 132/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 133/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 134/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 135/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 136/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 137/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 138/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 139/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 140/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 141/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 142/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 143/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 144/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 145/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 146/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 147/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 148/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 149/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 150/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 151/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 152/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 153/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 154/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 155/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 156/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 157/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 158/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 159/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 160/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 161/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 162/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 163/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 164/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 165/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 166/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 167/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 168/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 169/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 170/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 171/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 172/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 173/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 174/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 175/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 176/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 177/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 178/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 179/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 180/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 181/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 182/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 183/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 184/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 185/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 186/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 187/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 188/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 189/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 190/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 191/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 192/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 193/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 194/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 195/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 196/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 197/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 198/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 199/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 200/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 201/500
- 0s - loss: 0.0044 - val_loss: 0.0055
Epoch 202/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 203/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 204/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 205/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 206/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 207/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 208/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 209/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 210/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 211/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 212/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 213/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 214/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 215/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 216/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 217/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 218/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 219/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 220/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 221/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 222/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 223/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 224/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 225/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 226/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 227/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 228/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 229/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 230/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 231/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 232/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 233/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 234/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 235/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 236/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 237/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 238/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 239/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 240/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 241/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 242/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 243/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 244/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 245/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 246/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 247/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 248/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 249/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 250/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 251/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 252/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 253/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 254/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 255/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 256/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 257/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 258/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 259/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 260/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 261/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 262/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 263/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 264/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 265/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 266/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 267/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 268/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 269/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 270/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 271/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 272/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 273/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 274/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 275/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 276/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 277/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 278/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 279/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 280/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 281/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 282/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 283/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 284/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 285/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 286/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 287/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 288/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 289/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 290/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 291/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 292/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 293/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 294/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 295/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 296/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 297/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 298/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 299/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 300/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 301/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 302/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 303/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 304/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 305/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 306/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 307/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 308/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 309/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 310/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 311/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 312/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 313/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 314/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 315/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 316/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 317/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 318/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 319/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 320/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 321/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 322/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 323/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 324/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 325/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 326/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 327/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 328/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 329/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 330/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 331/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 332/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 333/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 334/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 335/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 336/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 337/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 338/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 339/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 340/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 341/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 342/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 343/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 344/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 345/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 346/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 347/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 348/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 349/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 350/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 351/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 352/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 353/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 354/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 355/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 356/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 357/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 358/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 359/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 360/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 361/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 362/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 363/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 364/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 365/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 366/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 367/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 368/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 369/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 370/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 371/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 372/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 373/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 374/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 375/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 376/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 377/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 378/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 379/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 380/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 381/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 382/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 383/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 384/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 385/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 386/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 387/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 388/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 389/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 390/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 391/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 392/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 393/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 394/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 395/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 396/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 397/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 398/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 399/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 400/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 401/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 402/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 403/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 404/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 405/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 406/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 407/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 408/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 409/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 410/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 411/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 412/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 413/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 414/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 415/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 416/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 417/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 418/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 419/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 420/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 421/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 422/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 423/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 424/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 425/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 426/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 427/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 428/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 429/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 430/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 431/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 432/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 433/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 434/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 435/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 436/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 437/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 438/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 439/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 440/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 441/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 442/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 443/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 444/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 445/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 446/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 447/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 448/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 449/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 450/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 451/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 452/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 453/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 454/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 455/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 456/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 457/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 458/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 459/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 460/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 461/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 462/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 463/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 464/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 465/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 466/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 467/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 468/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 469/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 470/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 471/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 472/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 473/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 474/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 475/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 476/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 477/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 478/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 479/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 480/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 481/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 482/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 483/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 484/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 485/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 486/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 487/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 488/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 489/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 490/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 491/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 492/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 493/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 494/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 495/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 496/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 497/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 498/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 499/500
- 0s - loss: 0.0044 - val_loss: 0.0054
Epoch 500/500
- 0s - loss: 0.0044 - val_loss: 0.0054
<keras.callbacks.History at 0x7fd4e6a34c50>
可以看出训练集和验证集的损失函数 都在减小,最后趋于一个稳定值.
下一篇: 30天搞定Java--第9天
推荐阅读