欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

2. nsights 可视化分析GPU核函数性能

程序员文章站 2024-02-26 22:06:22
...

例子:

#include <stdio.h>

void initWith(float num, float *a, int N)
{
  for(int i = 0; i < N; ++i)
  {
    a[i] = num;
  }
}

__global__
void addVectorsInto(float *result, float *a, float *b, int N)
{
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  int stride = blockDim.x * gridDim.x;

  for(int i = index; i < N; i += stride)
  {
    result[i] = a[i] + b[i];
  }
}

void checkElementsAre(float target, float *vector, int N)
{
  for(int i = 0; i < N; i++)
  {
    if(vector[i] != target)
    {
      printf("FAIL: vector[%d] - %0.0f does not equal %0.0f\n", i, vector[i], target);
      exit(1);
    }
  }
  printf("Success! All values calculated correctly.\n");
}

int main()
{
  int deviceId;
  int numberOfSMs;

  cudaGetDevice(&deviceId);
  cudaDeviceGetAttribute(&numberOfSMs, cudaDevAttrMultiProcessorCount, deviceId);

  const int N = 2<<24;
  size_t size = N * sizeof(float);

  float *a;
  float *b;
  float *c;

  cudaMallocManaged(&a, size);
  cudaMallocManaged(&b, size);
  cudaMallocManaged(&c, size);

  initWith(3, a, N);
  initWith(4, b, N);
  initWith(0, c, N);

  size_t threadsPerBlock;
  size_t numberOfBlocks;

  threadsPerBlock = 256;
  numberOfBlocks = 32 * numberOfSMs;

  cudaError_t addVectorsErr;
  cudaError_t asyncErr;

  addVectorsInto<<<numberOfBlocks, threadsPerBlock>>>(c, a, b, N);

  addVectorsErr = cudaGetLastError();
  if(addVectorsErr != cudaSuccess) printf("Error: %s\n", cudaGetErrorString(addVectorsErr));

  asyncErr = cudaDeviceSynchronize();
  if(asyncErr != cudaSuccess) printf("Error: %s\n", cudaGetErrorString(asyncErr));

  checkElementsAre(7, c, N);

  cudaFree(a);
  cudaFree(b);
  cudaFree(c);
}

编译:

nvcc -o vector-add-no-prefetch 01-vector-add/01-vector-add.cu -run

生成报告:

nsys profile --stats=true -o vector-add-no-prefetch-report ./vector-add-no-prefetch

使用nsight-sys 打开文件
2. nsights 可视化分析GPU核函数性能
通过命令行打开nsight-sys ,打开刚刚生成的qdrep文件
2. nsights 可视化分析GPU核函数性能
主要查看CUDA部分
2. nsights 可视化分析GPU核函数性能

2. nsights 可视化分析GPU核函数性能

相关标签: GPU