决策树算法--预测隐形眼镜类型
文章目录
一、决策树概述
1、算法思想
决策树是从根节点开始,对实例的某一特征进行测试,根据测试结果将实例分配到其子节点;每一个子节点对应着该特征的一个取值。如此递归地对实例进行测试并分配,直至达到叶节点。最后将实例分配到叶节点的类中。
决策树学习算法包括特征选择、决策树生成和决策树剪枝三部分。本文主要概述前两部分和采用ID3算法构建树。
2、一般流程
决策树的一般流程
(1)收集数据:可以使用任何方法。
(2)准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。
(3)分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期。
(4)训练算法:构造树的数据结构。
(5)测试算法:使用经验树计算错误率。
(6)使用算法:此步骤可以适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。
二、、决策树之判断贷款
1、准备数据
为了简单,本文章使用信息增益作为选择特征的标准。那么,什么是信息增益?在讲解信息增益之前,让我们看一组实例,贷款申请样本数据表。
2、训练算法
2.1特征选择:选择计算信息增益高的
2.11香农熵:为计算信息增益准备
划分数据集的大原则是:将无序的数据变得更加有序。组织杂乱无章数据的一种方法就是使用信息论度量信息。我们可以在划分数据之前使用信息论量化度量信息的内容。在划分数据集之前之后信息发生的变化称为信息增益,如何计算信息增益?集合信息的度量方式称为香农熵或者简称为熵,这个名字来源于信息论之父克劳德•香农。熵是表示随机变量不确定性的度量。
为了计算熵,我们需要计算所有类别所有可能值包含的信息期望值(数学期望),通过下面的公式得到:
期中n是分类的数目。熵越大,随机变量的不确定性就越大。
当熵中的概率由数据估计(特别是最大似然估计)得到时,所对应的熵称为经验熵(empirical entropy)。这经验熵公式可以写为:
根据此公式计算经验熵H(D),分析贷款申请样本数据表中的数据。最终分类结果只有两类,即放贷和不放贷。根据表中的数据统计可知,在15个数据中,9个数据的结果为放贷,6个数据的结果为不放贷。所以数据集D的经验熵H(D)为:
求解熵的代码如下:
年龄:0代表青年,1代表中年,2代表老年;
有工作:0代表否,1代表是;
有自己的房子:0代表否,1代表是;
信贷情况:0代表一般,1代表好,2代表非常好;
类别(是否给贷款):no代表否,yes代表是。
from math import log
def createDataSet():
dataSet = [[0, 0, 0, 0, 'no'], #数据集
[0, 0, 0, 1, 'no'],
[0, 1, 0, 1, 'yes'],
[0, 1, 1, 0, 'yes'],
[0, 0, 0, 0, 'no'],
[1, 0, 0, 0, 'no'],
[1, 0, 0, 1, 'no'],
[1, 1, 1, 1, 'yes'],
[1, 0, 1, 2, 'yes'],
[1, 0, 1, 2, 'yes'],
[2, 0, 1, 2, 'yes'],
[2, 0, 1, 1, 'yes'],
[2, 1, 0, 1, 'yes'],
[2, 1, 0, 2, 'yes'],
[2, 0, 0, 0, 'no']]
labels = ['年龄', '有工作', '有自己的房子', '信贷情况']
return dataSet, labels
def calcShannonEnt(dataSet):
numEntires = len(dataSet) # 计算数据样本个数
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1 # 计算类别个数
shannonEnt = 0.0 # 经验熵(香农熵)
for key in labelCounts: # 计算香农熵
prob = float(labelCounts[key]) / numEntires # 计算概率
shannonEnt -= prob * log(prob, 2) # 利用上述文本公式计算
return shannonEnt # 返回经验熵(香农熵)
dataSet, features = createDataSet()
print(dataSet)
print(calcShannonEnt(dataSet))
2.22信息增益:选择最优特征
信息增益是相对于特征而言的。所以,特征A对训练数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差,即
其中H(D|A)是经验条件熵(类似于概率论中得条件概率),其计算公式为:
一般地,熵H(D)与条件熵H(D|A)之差成为互信息(mutual information)。决策树学习中的信息增益等价于训练数据集中类与特征的互信息。
设特征A有n个不同的取值{a1,a2,···,an},根据特征A的取值将D划分为n个子集D1,D2,···,Dn,|Di|为Di的样本个数。记子集Di中属于Ck的样本的集合为Dik,即Dik = Di ∩ Ck,|Dik|为Dik的样本个数。于是经验条件熵的公式可以写为:
函数splitDataSet()按照给定特征划分数据集(返回原数据集去掉抽取的特征列);函数chooseBestFeatureToSplit()计算信息增益,选择信息增益高的(最优特征),其中会调用函数splitDataSet();
# -*- coding: UTF-8 -*-
from math import log
def createDataSet():
dataSet = [[0, 0, 0, 0, 'no'], #数据集
[0, 0, 0, 1, 'no'],
[0, 1, 0, 1, 'yes'],
[0, 1, 1, 0, 'yes'],
[0, 0, 0, 0, 'no'],
[1, 0, 0, 0, 'no'],
[1, 0, 0, 1, 'no'],
[1, 1, 1, 1, 'yes'],
[1, 0, 1, 2, 'yes'],
[1, 0, 1, 2, 'yes'],
[2, 0, 1, 2, 'yes'],
[2, 0, 1, 1, 'yes'],
[2, 1, 0, 1, 'yes'],
[2, 1, 0, 2, 'yes'],
[2, 0, 0, 0, 'no']]
labels = ['年龄', '有工作', '有自己的房子', '信贷情况']
return dataSet, labels
# 计算香农熵
def calcShannonEnt(dataSet):
numEntires = len(dataSet) # 计算数据样本个数
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1 # 计算类别个数
shannonEnt = 0.0 # 经验熵(香农熵)
for key in labelCounts: # 计算香农熵
prob = float(labelCounts[key]) / numEntires # 计算概率
shannonEnt -= prob * log(prob, 2) # 利用上述文本公式计算
return shannonEnt # 返回经验熵(香农熵)
# 按照给定特征划分数据集(返回原数据集去掉抽取的特征列)
def splitDataSet(dataSet, axis, value):
retDataSet = [] #创建返回的数据集列表
for featVec in dataSet: #遍历数据集
if featVec[axis] == value:
# 去掉axis特征
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet #返回划分后的数据集
# 计算最大信息增益,选取最优特征
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #特征数量
baseEntropy = calcShannonEnt(dataSet) #计算数据集的香农熵
bestInfoGain = 0.0 #信息增益
bestFeature = -1 #最优特征的索引值
for i in range(numFeatures): #遍历所有特征
#获取dataSet的第i个所有特征
featList = [example[i] for example in dataSet]
uniqueVals = set(featList) #创建set集合{},元素不可重复
newEntropy = 0.0 #经验条件熵
for value in uniqueVals: #计算信息增益
subDataSet = splitDataSet(dataSet, i, value) #subDataSet划分后的子集
prob = len(subDataSet) / float(len(dataSet)) #计算子集的概率
newEntropy += prob * calcShannonEnt(subDataSet) #根据公式计算经验条件熵
infoGain = baseEntropy - newEntropy #信息增益
print("第%d个特征的增益为%.3f" % (i, infoGain)) #打印每个特征的信息增益
if (infoGain > bestInfoGain): #计算信息增益
bestInfoGain = infoGain #更新信息增益,找到最大的信息增益
bestFeature = i #记录信息增益最大的特征的索引值
return bestFeature
dataSet, features = createDataSet()
print("最优特征索引值:%d"% chooseBestFeatureToSplit(dataSet))
2.2构建决策树
本文使用ID3算法来构建决策树;ID3算法的核心是在决策树各个结点上对应信息增益准则选择特征,递归地构建决策树。
函数majorityCnt()统计出现次数最多的类别;函数createTree()用于构建决策树。
# -*- coding: UTF-8 -*-
from math import log
import operator
def createDataSet():
dataSet = [[0, 0, 0, 0, 'no'], #数据集
[0, 0, 0, 1, 'no'],
[0, 1, 0, 1, 'yes'],
[0, 1, 1, 0, 'yes'],
[0, 0, 0, 0, 'no'],
[1, 0, 0, 0, 'no'],
[1, 0, 0, 1, 'no'],
[1, 1, 1, 1, 'yes'],
[1, 0, 1, 2, 'yes'],
[1, 0, 1, 2, 'yes'],
[2, 0, 1, 2, 'yes'],
[2, 0, 1, 1, 'yes'],
[2, 1, 0, 1, 'yes'],
[2, 1, 0, 2, 'yes'],
[2, 0, 0, 0, 'no']]
labels = ['年龄', '有工作', '有自己的房子', '信贷情况']
return dataSet, labels
# 计算香农熵
def calcShannonEnt(dataSet):
numEntires = len(dataSet) # 计算数据样本个数
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1 # 计算类别个数
shannonEnt = 0.0 # 经验熵(香农熵)
for key in labelCounts: # 计算香农熵
prob = float(labelCounts[key]) / numEntires # 计算概率
shannonEnt -= prob * log(prob, 2) # 利用上述文本公式计算
return shannonEnt # 返回经验熵(香农熵)
# 按照给定特征划分数据集(返回原数据集去掉抽取的特征列)
def splitDataSet(dataSet, axis, value):
retDataSet = [] #创建返回的数据集列表
for featVec in dataSet: #遍历数据集
if featVec[axis] == value:
# 去掉axis特征
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet #返回划分后的数据集
# 计算最大信息增益,选取最优特征
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #特征数量
baseEntropy = calcShannonEnt(dataSet) #计算数据集的香农熵
bestInfoGain = 0.0 #信息增益
bestFeature = -1 #最优特征的索引值
for i in range(numFeatures): #遍历所有特征
#获取dataSet的第i个所有特征
featList = [example[i] for example in dataSet]
uniqueVals = set(featList) #创建set集合{},元素不可重复
newEntropy = 0.0 #经验条件熵
for value in uniqueVals: #计算信息增益
subDataSet = splitDataSet(dataSet, i, value) #subDataSet划分后的子集
prob = len(subDataSet) / float(len(dataSet)) #计算子集的概率
newEntropy += prob * calcShannonEnt(subDataSet) #根据公式计算经验条件熵
infoGain = baseEntropy - newEntropy #信息增益
print("第%d个特征的增益为%.3f" % (i, infoGain)) #打印每个特征的信息增益
if (infoGain > bestInfoGain): #计算信息增益
bestInfoGain = infoGain #更新信息增益,找到最大的信息增益
bestFeature = i #记录信息增益最大的特征的索引值
return bestFeature
def majorityCnt(classList):
classCount = {}
for vote in classList: #统计classList中每个元素出现的次数
if vote not in classCount.keys():classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True) #根据字典的值降序排序
return sortedClassCount[0][0] #返回classList中出现次数最多的元素
# 构建决策树
def createTree(dataSet, labels, featLabels):
classList = [example[-1] for example in dataSet] #取分类标签(是否放贷:yes or no)
if classList.count(classList[0]) == len(classList): #如果数据集只有一个类别,停止分类,构建单决策树
return classList[0]
if len(dataSet[0]) == 1: #遍历完所有特征时返回出现次数最多的类标签
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet) #选择最优特征
bestFeatLabel = labels[bestFeat] #最优特征的标签
featLabels.append(bestFeatLabel)
myTree = {bestFeatLabel:{}} #根据最优特征的标签生成树
del(labels[bestFeat]) #删除已经使用特征标签
featValues = [example[bestFeat] for example in dataSet] #得到训练集中所有最优特征的属性值
uniqueVals = set(featValues) #去掉重复的属性值
for value in uniqueVals: #遍历特征,创建决策树。
# 运用递归构建决策树
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), labels, featLabels)
return myTree
if __name__ == '__main__':
dataSet, labels = createDataSet()
featLabels = []
myTree = createTree(dataSet, labels, featLabels)
print(myTree)
3、测试、使用算法:判别函数、输入新样本
构建好决策树后,可以用它来进行分类;根据决策树的内容,我们只需提供1、是否有房2、是否有工作 两个信息就能判断结果。这里只增加了classify函数,用于决策树分类。输入[0,1]代表无房子、有工作来判断是否贷款。
# -*- coding: UTF-8 -*-
from math import log
import operator
def createDataSet():
dataSet = [[0, 0, 0, 0, 'no'], #数据集
[0, 0, 0, 1, 'no'],
[0, 1, 0, 1, 'yes'],
[0, 1, 1, 0, 'yes'],
[0, 0, 0, 0, 'no'],
[1, 0, 0, 0, 'no'],
[1, 0, 0, 1, 'no'],
[1, 1, 1, 1, 'yes'],
[1, 0, 1, 2, 'yes'],
[1, 0, 1, 2, 'yes'],
[2, 0, 1, 2, 'yes'],
[2, 0, 1, 1, 'yes'],
[2, 1, 0, 1, 'yes'],
[2, 1, 0, 2, 'yes'],
[2, 0, 0, 0, 'no']]
labels = ['年龄', '有工作', '有自己的房子', '信贷情况']
return dataSet, labels
# 计算香农熵
def calcShannonEnt(dataSet):
numEntires = len(dataSet) # 计算数据样本个数
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1 # 计算类别个数
shannonEnt = 0.0 # 经验熵(香农熵)
for key in labelCounts: # 计算香农熵
prob = float(labelCounts[key]) / numEntires # 计算概率
shannonEnt -= prob * log(prob, 2) # 利用上述文本公式计算
return shannonEnt # 返回经验熵(香农熵)
# 按照给定特征划分数据集(返回原数据集去掉抽取的特征列)
def splitDataSet(dataSet, axis, value):
retDataSet = [] #创建返回的数据集列表
for featVec in dataSet: #遍历数据集
if featVec[axis] == value:
# 去掉axis特征
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet #返回划分后的数据集
# 计算最大信息增益,选取最优特征
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #特征数量
baseEntropy = calcShannonEnt(dataSet) #计算数据集的香农熵
bestInfoGain = 0.0 #信息增益
bestFeature = -1 #最优特征的索引值
for i in range(numFeatures): #遍历所有特征
#获取dataSet的第i个所有特征
featList = [example[i] for example in dataSet]
uniqueVals = set(featList) #创建set集合{},元素不可重复
newEntropy = 0.0 #经验条件熵
for value in uniqueVals: #计算信息增益
subDataSet = splitDataSet(dataSet, i, value) #subDataSet划分后的子集
prob = len(subDataSet) / float(len(dataSet)) #计算子集的概率
newEntropy += prob * calcShannonEnt(subDataSet) #根据公式计算经验条件熵
infoGain = baseEntropy - newEntropy #信息增益
print("第%d个特征的增益为%.3f" % (i, infoGain)) #打印每个特征的信息增益
if (infoGain > bestInfoGain): #计算信息增益
bestInfoGain = infoGain #更新信息增益,找到最大的信息增益
bestFeature = i #记录信息增益最大的特征的索引值
return bestFeature
def majorityCnt(classList):
classCount = {}
for vote in classList: #统计classList中每个元素出现的次数
if vote not in classCount.keys():classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True) #根据字典的值降序排序
return sortedClassCount[0][0] #返回classList中出现次数最多的元素
# 构建决策树
def createTree(dataSet, labels, featLabels):
classList = [example[-1] for example in dataSet] #取分类标签(是否放贷:yes or no)
if classList.count(classList[0]) == len(classList): #如果数据集只有一个类别,停止分类,构建单决策树
return classList[0]
if len(dataSet[0]) == 1: #遍历完所有特征时返回出现次数最多的类标签
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet) #选择最优特征
bestFeatLabel = labels[bestFeat] #最优特征的标签
featLabels.append(bestFeatLabel)
myTree = {bestFeatLabel:{}} #根据最优特征的标签生成树
del(labels[bestFeat]) #删除已经使用特征标签
featValues = [example[bestFeat] for example in dataSet] #得到训练集中所有最优特征的属性值
uniqueVals = set(featValues) #去掉重复的属性值
for value in uniqueVals: #遍历特征,创建决策树。
# 运用递归构建决策树
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), labels, featLabels)
return myTree
def classify(inputTree, featLabels, testVec):
firstStr = next(iter(inputTree)) #获取决策树结点
secondDict = inputTree[firstStr] #下一个字典
featIndex = featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == 'dict':
classLabel = classify(secondDict[key], featLabels, testVec)
else: classLabel = secondDict[key]
return classLabel
if __name__ == '__main__':
dataSet, labels = createDataSet()
featLabels = []
myTree = createTree(dataSet, labels, featLabels)
testVec = [0,1]
print("输入的情况是","1",featLabels[testVec[0]],"2",featLabels[testVec[1]])#测试数据
result = classify(myTree, featLabels, testVec)
if result == 'yes':
print('放贷')
if result == 'no':
print('不放贷')
4、决策树的存储、使用
构造决策树是很耗时的任务,即使处理很小的数据集,如前面的样本数据,也要花费几秒的时间,如果数据集很大,将会耗费很多计算时间。然而用创建好的决策树解决分类问题,则可以很快完成。因此,为了节省计算时间,最好能够在每次执行分类时调用已经构造好的决策树。为了解决这个问题,需要使用Python模块pickle序列化对象。序列化对象可以在磁盘上保存对象,并在需要的时候读取出来。
import pickle
def storeTree(inputTree, filename):
with open(filename, 'wb') as fw:
pickle.dump(inputTree, fw)
if __name__ == '__main__':
myTree = {'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}
storeTree(myTree, 'classifierStorage.txt')
结果会在代码同目录下生成一个classifierStorage.txt文件,存储树信息。
已经存储完毕,当再次使用时,使用模块pickle调用classifierStorage树信息。
import pickle
def grabTree(filename):
fr = open(filename, 'rb')
return pickle.load(fr)
if __name__ == '__main__':
myTree = grabTree('classifierStorage.txt')
print(myTree)
三、决策树预测隐形眼镜
数据地址:lenses.txt
使用sklearn构建决策树
因为在fit()函数不能接收string类型的数据,为了对string类型的数据序列化,需要先生成pandas数据,这样方便我们的序列化工作。这里我使用的方法是,原始数据->字典->pandas数据,接下来将数据序列化
# -*- coding: UTF-8 -*-
import pandas as pd
from sklearn.preprocessing import LabelEncoder
if __name__ == '__main__':
with open('lenses.txt', 'r') as fr: #加载文件
lenses = [inst.strip().split('\t') for inst in fr.readlines()] #处理文件
lenses_target = [] #提取每组数据的类别,保存在列表里
for each in lenses:
lenses_target.append(each[-1])
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate'] #特征标签
lenses_list = [] #保存lenses数据的临时列表
lenses_dict = {} #保存lenses数据的字典,用于生成pandas
for each_label in lensesLabels: #提取信息,生成字典
for each in lenses:
lenses_list.append(each[lensesLabels.index(each_label)])
lenses_dict[each_label] = lenses_list
lenses_list = []
# print(lenses_dict) #打印字典信息
lenses_pd = pd.DataFrame(lenses_dict) #生成pandas.DataFrame
print(lenses_pd) #打印pandas.DataFrame
le = LabelEncoder() #创建LabelEncoder()对象,用于序列化
for col in lenses_pd.columns: #为每一列序列化
lenses_pd[col] = le.fit_transform(lenses_pd[col])
print(lenses_pd)
使用Graphviz可视化决策树
准备工作:1、需要安装第三方库pydotplus,可以自动安装。
2、需要安装Graphviz,需要手动安装,网上搜索安装。
# -*- coding: UTF-8 -*-
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.externals.six import StringIO
from sklearn import tree
import pandas as pd
import pydotplus
if __name__ == '__main__':
with open('lenses.txt', 'r') as fr: #加载文件
lenses = [inst.strip().split('\t') for inst in fr.readlines()] #处理文件
lenses_target = [] #提取每组数据的类别,保存在列表里
for each in lenses:
lenses_target.append(each[-1])
print(lenses_target)
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate'] #特征标签
lenses_list = [] #保存lenses数据的临时列表
lenses_dict = {} #保存lenses数据的字典,用于生成pandas
for each_label in lensesLabels: #提取信息,生成字典
for each in lenses:
lenses_list.append(each[lensesLabels.index(each_label)])
lenses_dict[each_label] = lenses_list
lenses_list = []
# print(lenses_dict) #打印字典信息
lenses_pd = pd.DataFrame(lenses_dict) #生成pandas.DataFrame
# print(lenses_pd) #打印pandas.DataFrame
le = LabelEncoder() #创建LabelEncoder()对象,用于序列化
for col in lenses_pd.columns: #序列化
lenses_pd[col] = le.fit_transform(lenses_pd[col])
# print(lenses_pd) #打印编码信息
clf = tree.DecisionTreeClassifier(max_depth = 4) #创建DecisionTreeClassifier()类
clf = clf.fit(lenses_pd.values.tolist(), lenses_target) #使用数据,构建决策树
dot_data = StringIO()
tree.export_graphviz(clf, out_file = dot_data, #绘制决策树
feature_names = lenses_pd.keys(),
class_names = clf.classes_,
filled=True, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("tree.pdf") #保存绘制好的决策树,以PDF的形式存储。
print(clf.predict([[1,1,1,0]])) #预测
代码最后一行根据sklearn构建的决策树进行预测,结果如下:
运行代码,在该python文件保存的相同目录下,会生成一个名为tree的PDF文件,打开文件,我们就可以看到决策树的可视化效果图了。
上一篇: Linux分发脚本