欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

sklearn实现决策树

程序员文章站 2024-02-26 15:48:04
...
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier, plot_tree

# 参数
n_classes = 3
plot_colors = 'ryb'
plot_step = 0.02

# 加载数据
iris = load_iris()

for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3],
                                [1, 2], [1, 3], [2, 3]]):
    X = iris.data[:, pair]
    y = iris.target

    # 训练
    clf = DecisionTreeClassifier().fit(X, y)

    # 视图
    plt.subplot(2, 3, pairidx + 1)
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 0].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),
                         np.arange(y_min, y_max, plot_step))
    plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)

    z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    z = z.reshape(xx.shape)
    cs = plt.contourf(xx, yy, z, cmap=plt.cm.get_cmap('RdYlBu'))

    plt.xlabel(iris.feature_names[pair[0]])
    plt.ylabel(iris.feature_names[pair[1]])

    for i, color in zip(range(n_classes), plot_colors):
        idx = np.where(y == i)
        plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],
                    cmap=plt.cm.get_cmap('RdYlBu'), edgecolors='black', s=15)

plt.suptitle("Decision surface of a decision tree using paired features")
plt.legend(loc='lower right', borderpad=0, handletextpad=0)
plt.axis("tight")

plt.figure()
clf = DecisionTreeClassifier().fit(iris.data, iris.target)
plot_tree(clf, filled=True)
plt.show()

 

sklearn实现决策树

sklearn实现决策树

相关标签: 机器学习