欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Java动态规划之硬币找零问题实现代码

程序员文章站 2024-02-26 15:05:22
动态规划的基本思想是将待求解问题分解成若干个子问题,先求解子问题,并将这些子问题的解保存起来,如果以后在求解较大子问题的时候需要用到这些子问题的解,就可以直接取出这些已经计...

动态规划的基本思想是将待求解问题分解成若干个子问题,先求解子问题,并将这些子问题的解保存起来,如果以后在求解较大子问题的时候需要用到这些子问题的解,就可以直接取出这些已经计算过的解而免去重复运算。保存子问题的解可以使用填表方式,例如保存在数组中。

用一个实际例子来体现动态规划的算法思想——硬币找零问题。

问题描述:

假设有几种硬币,并且数量无限。请找出能够组成某个数目的找零所使用最少的硬币数。例如几种硬币为[1, 3, 5], 面值2的最少硬币数为2(1, 1), 面值4的最少硬币数为2(1, 3), 面值11的最少硬币数为3(5, 5, 1或者5, 3, 3).

问题分析:

假设不同的几组硬币为数组coin[0, ..., n-1]. 则求面值k的最少硬币数count(k), 那么count函数和硬币数组coin满足这样一个条件:

count(k) = min(count(k - coin[0]), ..., count(k - coin[n - 1])) + 1;
并且在符合条件k - coin[i] >= 0 && k - coin[i] < k的情况下, 前面的公式才成立.
因为k - coin[i] < k的缘故, 那么在求count(k)时, 必须满足count(i)(i <- [0, k-1])已知, 所以这里又涉及到回溯的问题.

所以我们可以创建一个矩阵matrix[k + 1][coin.length + 1], 使matrix[0][j]全部初始化为0值, 而在matrix[i][coin.length]保存面值为i的最少硬币数.

而且具体的过程如下:

* k|coin 1  3  5  min
  * 0    0  0  0  0
  * 1    1  0  0  1
  * 2    2  0  0  2
  * 3    3  1  0  3, 1
  * 4    2  2  0  2, 2
  * 5    3  3  1  3, 3, 1
  * 6    2  2  2  2, 2, 2
  * ...

最后, 具体的java代码实现如下:

public static int backtrackingcoin(int[] coins, int k) {//回溯法+动态规划
    if (coins == null || coins.length == 0 || k < 1) {
      return 0;
    }
    int[][] matrix = new int[k + 1][coins.length + 1];
    for (int i = 1; i <= k; i++) {
      for (int j = 0; j < coins.length; j++) {
        int prek = i - coins[j];
        if (prek > -1) {//只有在不小于0时, prek才能存在于数组matrix中, 才能够进行回溯.
          matrix[i][j] = matrix[prek][coins.length] + 1;//面值i在进行回溯
          if (matrix[i][coins.length] == 0 || matrix[i][j] < matrix[i][coins.length]) {//如果当前的硬币数目是最少的, 更新min列的最少硬币数目
            matrix[i][coins.length] = matrix[i][j];
          }
        }
      }
    }
    return matrix[k][coins.length];
  }

代码经过测试, 题目给出的测试用例全部通过!

总结

以上就是本文关于java动态规划之硬币找零问题实现代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题。如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!