欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Anaconda多环境多版本python配置操作方法

程序员文章站 2024-02-26 12:35:58
conda测试指南 在开始这个conda测试之前,你应该已经下载并安装好了Anaconda或者Miniconda 注意:在安装之后,你应该关闭并重新打开windows命...

conda测试指南

在开始这个conda测试之前,你应该已经下载并安装好了Anaconda或者Miniconda

注意:在安装之后,你应该关闭并重新打开windows命令行。

一、Conda测试过程:

使用conda。首先我们将要确认你已经安装好了conda

配置环境。下一步我们将通过创建几个环境来展示conda的环境管理功能。使你更加轻松的了解关于环境的一切。我们将学习如何确认你在哪个环境中,以及如何做复制一个环境作为备份。

测试python。然后我们将检查哪一个版本的python可以被安装,以及安装另一个版本的python,还有在两个版本的python之间的切换。

检查包。我们将1)罗列出安装在我们电脑上的包,2)浏览可用的包,3)使用conda install命令来来安装以及移除一些包。对于一些不能使用conda安装的包,我们将4)在Anaconda.org网站上搜索。对于那些在其它位置的包,我们将5)使用pip命令来实现安装。我们还会安装一个可以免费试用30天的商业包IOPro

移除包、环境以及conda.我们将以学习删除你的包、环境以及conda来结束这次测试。

二、完整过程

提示:在任何时候你可以通过在命令后边跟上--help来获得该命令的完整文档。例如,你可以通过如下的命令来学习conda的update命令。

conda update --help

1. 管理conda:

Conda既是一个包管理器又是一个环境管理器。你肯定知道包管理器,它可以帮你发现和查看包。但是如果当我们想要安装一个包,但是这个包只支持跟我们目前使用的python不同的版本时。你只需要几行命令,就可以搭建起一个可以运行另外python版本的环境。,这就是conda环境管理器的强大功能。

提示:无论你使用Linux、OS X或者Windows命令行工具,在你的命令行终端conda指令都是一样的,除非有特别说明。

检查conda已经被安装。

为了确保你已经在正确的位置安装好了conda,让我们来检查你是否已经成功安装好了Anaconda。在你的命令行终端窗口,输入如下代码:

conda --version

Conda会返回你安装Anaconda软件的版本。

提示:如果你看到了错误信息,检查你是否在安装过程中选择了仅为当前用户按安装,并且是否以同样的账户来操作。确保用同样的账户登录安装了之后重新打开命令行终端窗口。

升级当前版本的conda

接下来,让我们通过使用如下update命令来升级conda:

conda update conda

conda将会比较新旧版本并且告诉你哪一个版本的conda可以被安装。它也会通知你伴随这次升级其它包同时升级的情况。

如果新版本的conda可用,它会提示你输入y进行升级.

proceed ([y]/n)? y

conda更新到最新版后,我们将进入下一个主题。

2. 管理环境。

现在我们通过创建一些环境来展示conda的环境操作,然后移动它们。

创建并激活一个环境

使用conda create命令,后边跟上你希望用来称呼它的任何名字:

conda create --name snowflake biopython

这条命令将会给biopython包创建一个新的环境,位置在/envs/snowflakes

小技巧:很多跟在--后边常用的命令选项,可以被略写为一个短线加命令首字母。所以--name选项和-n的作用是一样的。通过conda -h或conda –-help来看大量的缩写。

激活这个新环境

Linux,OS X: source activate snowflakes
Windows:activate snowflake`

小技巧:新的开发环境会被默认安装在你conda目录下的envs文件目录下。你可以指定一个其他的路径;去通过conda create -h了解更多信息吧。

小技巧:如果我们没有指定安装python的版本,donda会安装我们最初安装conda时所装的那个版本的python。

创建第二个环境

这次让我们来创建并命名一个新环境,然后安装另一个版本的python以及两个包 Astroid 和 Babel。

conda create -n bunnies python=3 Astroid Babel

这将创建第二个基于python3 ,包含Astroid 和 Babel 包,称为bunnies的新环境,在/envs/bunnies文件夹里。

小技巧:在此同时安装你想在这个环境中运行的包,

小提示:在你创建环境的同时安装好所有你想要的包,在后来依次安装可能会导致依赖性问题(貌似是,不太懂这个术语怎么翻)。

小技巧:你可以在conda create命令后边附加跟多的条件,键入conda create –h 查看更多细节。

列出所有的环境

现在让我们来检查一下截至目前你所安装的环境,使用conda environment info 命令来查看它:

conda info --envs

你将会看到如下的环境列表:

conda environments:

 snowflakes          * /home/username/miniconda/envs/snowflakes

 bunnies               /home/username/miniconda/envs/bunnies

 root                  /home/username/miniconda

确认当前环境

你现在处于哪个环境中呢?snowflakes还是bunnies?想要确定它,输入下面的代码:

conda info -envis

conda将会显示所有环境的列表,当前环境会显示在一个括号内。

(snowflakes)

注意:conda有时也会在目前活动的环境前边加上*号。

切换到另一个环境(activate/deactivate)

为了切换到另一个环境,键入下列命令以及所需环境的名字。

Linux,OS X: source activate snowflakes
Windows:activate snowflakes

如果要从你当前工作环境的路径切换到系统根目录时,键入:

Linux,OS X: source deactivate
Windows: deactivate

当该环境不再活动时,将不再被提前显示。

复制一个环境

通过克隆来复制一个环境。这儿将通过克隆snowfllakes来创建一个称为flowers的副本。

conda create -n flowers --clone snowflakes

通过conda info –-envs来检查环境

你现在应该可以看到一个环境列表:flowers, bunnies, and snowflakes.

删除一个环境

如果你不想要这个名为flowers的环境,就按照如下方法移除该环境:

conda remove -n flowers --all

为了确定这个名为flowers的环境已经被移除,输入以下命令:

conda info -e

flowers 已经不再在你的环境列表里了,所以我们知道它被删除了。

学习更多关于环境的知识

如果你想学习更多关于conda的命令,就在该命令后边跟上 -h

conda remove -h

3. 管理Python

conda对Python的管理跟其他包的管理类似,所以可以很轻松地管理和升级多个安装。

检查python版本

首先让我们检查那个版本的python可以被安装:

conda search --full --name python

你可以使用conda search python来看到所有名字中含有“python”的包或者加上--full --name命令选项来列出完全与“python”匹配的包。

安装一个不同版本的python

现在我们假设你需要python3来编译程序,但是你不想覆盖掉你的python2.7来升级,你可以创建并激活一个名为snakes的环境,并通过下面的命令来安装最新版本的python3:

conda create -n snakes python=3
·Linux,OS X:source activate snakes
·Windows: activate snakes

小提示:给环境取一个很形象的名字,例如“Python3”是很明智的,但是并不有趣。

确定环境添加成功

为了确保snakes环境已经被安装了,键入如下命令:

conda info -e

conda会显示环境列表,当前活动的环境会被括号括起来(snakes)

检查新的环境中的python版本

确保snakes环境中运行的是python3:

python --version

使用不同版本的python

为了使用不同版本的python,你可以切换环境,通过简单的激活它就可以,让我们看看如何返回默认2.7

·Linux,OS X: source activate snowflakes
·Windows:activate snowflakes

检查python版本:

确保snowflakes环境中仍然在运行你安装conda时安装的那个版本的python。

python --version

注销该环境

当你完成了在snowflakes环境中的工作室,注销掉该环境并转换你的路径到先前的状态:

·Linux,OS X:source deactivate
·Windows:deactivate

4. 管理包

现在让我们来演示包。我们已经安装了一些包(Astroid,Babel和一些特定版本的python),当我们创建一个新环境时。我们检查我们已经安装了那些包,检查哪些是可用的,寻找特定的包并安装它。接下来我们在Anconda.org仓库中查找并安装一些指定的包,用conda来完成更多pip可以实现的安装,并安装一个商业包。

查看该环境中包和其版本的列表:

使用这条命令来查看哪个版本的python或其他程序安装在了该环境中,或者确保某些包已经被安装了或被删除了。在你的终端窗口中输入:

conda list

使用conda命令查看可用包的列表

一个可用conda安装的包的列表,按照Python版本分类,可以从这个地址获得:

http://docs.continuum.io/anaconda/pkg-docs.html

查找一个包

首先让我们来检查我们需要的这个包是否可以通过conda来安装:

conda search beautifulsoup4

它展示了这个包,所以我们知道它是可用的。

安装一个新包

我们将在当前环境中安装这个Beautiful Soup包,使用conda命令如下;

conda install --name bunnies beautifulsoup4

提示:你必须告诉conda你要安装环境的名字(-n bunies)否则它将会被安装到当前环境中。

现在激活bunnies环境,并且用conda list来显示哪些程序被安装了。

·Linux,OS X:source activate bunnies
·Windows:activate bunnies

所有的平台:

conda list

从Anaconda.org安装一个包

如果一个包不能使用conda安装,我们接下来将在Anaconda.org网站查找。Anaconda.org向公开和私有包仓库提供包管理服务。Anaconda.org是一个连续分析产品。

提示:你在Anaconda.org下载东西的时候不强制要求注册。

为了从Anaconda.org下载到当前的环境中,我们需要通过指定Anaconda.org为一个特定通道,通过输入这个包的完整路径来实现。

在浏览器中,去 http://anaconda.org 网站。我们查找一个叫“bottleneck”的包,所以在左上角的叫“Search Anaconda Cloud”搜索框中输入“bottleneck”并点击search按钮。

Anaconda.org上会有超过一打的bottleneck包的版本可用,但是我们想要那个被下载最频繁的版本。所以你可以通过下载量来排序,通过点击Download栏。

点击包的名字来选择最常被下载的包。它会链接到Anaconda.org详情页显示下载的具体命令:

conda install --channel https://conda .anaconda.ort/pandas bottleneck

检查被下载的包

conda list

通过pip命令来安装包

对于那些无法通过conda安装或者从Anaconda.org获得的包,我们通常可以用pip(“pip install packages”的简称)来安装包。

提示: pip只是一个包管理器,所以它不能为你管理环境。pip甚至不能升级python,因为它不像conda一样把python当做包来处理。但是它可以安装一些conda安装不了的包,和vice versa(此处不会翻译)。pip和conda都集成在Anaconda或miniconda里边。

我们激活我们想放置程序的环境,然后通过pip安装一个叫“See”的程序。

·Linux,OS X: source activate bunnies
·Windows:activate bunnies

所有平台:

pip install see

检查pip安装

检查See是否被安装:

conda list

安装商业包

安装商业包与你安装其他的包的过程异常。举个例子,让我们安装并删除一个更新的商业包的免费试用 IOPro,可以加速你的python处理速度:

conda install iopro

提示:除了学术使用,该版本在30天后试用期满

你现在可以安装以及检查你想用conda安装的任何包,无论使用conda命令、从Anaconda.org下载或者使用pip安装,无论开源软件还是商业包。

5. 移除包、环境、或者conda

如果你愿意的话。让我们通过移除一个或多个试验包、环境以及conda来结束这次测试指导。

移除包

假设你决定不再使用商业包IOPro。你可以在bunnies环境中移除它。

conda remove -n bunnies iopro

确认包已经被移除

使用conda list命令来确认IOPro已经被移除了

conda list

移除环境

我们不再需要snakes环境了,所以输入以下命令:

conda remove -n snakes --all

确认环境被移除

为了确认snakes环境已经被移除了,输入以下命令:

 conda info --envis

snakes不再显示在环境列表里了,所以我们知道它已经被删除了

删除conda

Linux,OS X:

移除Anaconda 或 Miniconda 安装文件夹

rm -rf ~/miniconda OR  rm -rf ~/anaconda

Windows:

去控制面板,点击“添加或删除程序”,选择“Python2.7(Anaconda)”或“Python2.7(Miniconda)”并点击删除程序。

以上这篇Anaconda多环境多版本python配置操作方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。