欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【嵌入式开发】ARM 异常向量表 ( 异常概念 | 异常处理流程 | 异常向量 | 汇编代码 )

程序员文章站 2024-02-25 15:04:21
...


本博客的参考文章及相关资料下载 :





一. 异常向量表



参考手册 :


1. 异常相关概念


(1) 异常


异常定义 :

  • 1.异常简介 : 由于 内部或者外部的一些事件 , 导致 处理器停下正在处理的工作, 转而去处理这些发生的事;
  • 2.处理器状态 : 当遇到异常的时候, 先将处理器状态保存起来, 以便执行完异常处理程序后, 可以恢复处理器状态, 继续执行异常出现点下面的代码;
  • 3.异常同时出现 : 在一个时间点 可以出现 多个异常;
  • 4.异常向量概念 : 当异常发生的时候, 程序被强行从一个固定的内存地址执行, 每个种类的异常都有对应的一固定内存地址, 这个内存地址就是异常向量 ;


(2) 异常类型简介


异常类型 : ARM 架构 支持 七种类型的异常,

  • 1.Reset : 处理器在工作时, 突然 按下重启键, 就会触发该异常;
  • 2.Undefined instructions : 处理器无法识别指令的异常, 处理器执行的指令是有规范的, 如果 尝试执行 不符合要求的指令, 就会进入到该异常指令对应的地址中;
  • 3.Software interrupt (SWI) : 软中断, 软件中需要去打断处理器工作, 可以使用软中断来执行 ;
  • 4.Prefetch Abort (instruction fetch memory abort) : 预取指令失败, ARM 在执行指令的过程中, 要先去预取指令准备执行, 如果预取指令失败, 就会产生该异常;
  • 5.Data Abort (data access memory abort) : 读取数据失败;
  • 6.IRQ (interrupt) : 普通中断;
  • 7.FIQ (fast interrupt) : 快速中断, 快速中断要比普通中断响应速度要快一些;


2. 异常处理


(1) 异常处理


异常处理简介 :

  • 1.异常向量工作机制 : 异常发生时, ARM 处理器会跳转到对应该异常的 固定地址 去执行异常处理程序, 这个 固定的地址 就是异常向量;
  • 2.默认地址 和 高位地址 : 每个中断类型对应两个异常向量, 默认是 Normal address, 如果经过配置, 配置使用高位的异常向量, 就会使用 High vector address 异常向量; 使用 普通 向量 还是 高位向量, 可以使用 CP15 协处理器进行配置;
  • 3.异常 与 地址 一一对应 : 每个异常都对应着一个地址, 出现指定类型的异常时, 就会跳转到该异常对应的地址执行异常处理程序;
  • 4.注意异常向量断点 ( 保留位 ) : 普通向量 ( Normal Vector ) 地址 0x00000014高位向量 ( High Vector ) 地址 0xFFFF0014 暂时没有使用, 为今后的扩展保留;

【嵌入式开发】ARM 异常向量表 ( 异常概念 | 异常处理流程 | 异常向量 | 汇编代码 )







二. 异常向量表代码编写




1. 初始化异常向量表模块代码



Start.S 汇编程序解析 :

  • 1.汇编参考文章 : https://blog.csdn.net/shulianghan/article/details/42408137 ;
  • 2.汇编参考手册下载地址 : https://download.csdn.net/download/han1202012/8328375
  • 3.指明汇编代码段 : 使用 .text 宏 指明汇编代码段;
  • 4.标明程序入口标号 : 先使用 .global _start 将 _start 声明成全局符号; 使用 _start: 标明程序的入口标号是 _start;
  • 5.定义标号( 类似于函数名 ) : 定义自定义标号, 格式 标号:, 例如 irq:;

    • ( 1 ) 定义标号执行的指令 : 标号下面定义要执行的指令, 如果想要执行标号下面的指令, 直接跳转到对应标号即可;
    • ( 2 ) 异常执行的代码内容 : 在下面代码的 27 ~ 49 行就是定义了 7 个异常执行操作的 标号 以及要执行的指令 nop; 这些都是异常发生的时候要处理的代码;
    • ( 3 ) 代码示例 : 下面代码定义了一个 irq 标号, 跳转到该标号即开始执行标号下的代码 nop, irq : nop;
  • 6.空操作 : 如果在某个位置执行指令, 不想做任何操作, 可以使用 nop 表示 什么操作都不执行;

  • 7.定义标号 ( 类似于变量 ) : 定义一个标号, 在标号中存放 32 位的值, 定义格式 标号: .word 存储值的内容;

    • ( 1 ) 示例 : _irq: .word irq, 定义 _irq 标号, .word 表示该标号存储的是 32 位值, 这个值的大小就是 irq 地址;
  • 8.分支指令 : 当异常发生的时候, 需要跳转到对应的异常处理指令中;

    • ( 1 ) 分支指令语法格式 : b{条件} 地址, 如果①满足条件, 就跳转到 地址 位置, 如果②不满足条件, 就执行下面的语句, ③如果没有条件, 就是 100% 执行;
    • ( 2 ) 代码示例 : b reset, 异常发生时, 直接跳转到 reset 标号处执行代码;
  • 9.装载指令 :

    • ( 1 ) 装载指令语法格式 : ldr 寄存器, 地址, 将 地址 中存放的数据 装载 到 寄存器中;
    • ( 2 ) 代码示例 :
      • a.定义标号 ( 函数 ) : 定义要执行的指令的标号 irq , 即跳转到该标号处, 就开始执行标号下面的指令, irq : nop ;
      • b.定义标号 ( 变量 ) : 定义一个标号 _irq , 用于存放一个 32 位的值, 这里用于存放 上面 定义的标号 地址, _irq .word irq
      • c.装载地址到 pc 寄存器 : ldr pc, _irq, 将 _irq 标号中存放的值, 这个值是 irq 标号的地址, 就是跳转到该地址去执行指令;
  • 10.完整汇编代码示例 :
@****************************  
@File:start.S  
@  
@异常处理框架  
@****************************  

.text                                   @ 宏 指明代码段  
.global _start                          @ 伪指令声明全局开始符号  
_start:                                 @ 程序入口标志  
        b   reset                       @ reset 复位异常  
        ldr pc, _undefined_instruction  @ 未定义异常, 将 _undefined_instruction 值装载到 pc 指针中  
        ldr pc, _software_interrupt     @ 软中断异常  
        ldr pc, _prefetch_abort         @ 预取指令异常  
        ldr pc, _data_abort             @ 数据读取异常  
        ldr pc, _not_used               @ 占用 0x00000014 地址                            
        ldr pc, _irq                    @ 普通中断异常  
        ldr pc, _fiq                    @ 软中断异常  

_undefined_instruction: .word undefined_instruction @ _undefined_instruction 标号存放了一个值, 该值是 32 位地址 undefined_instruction, undefined_instruction 是一个地址  
_software_interrupt:    .word software_interrupt    @ 软中断异常  
_prefetch_abort:    .word prefetch_abort            @ 预取指令异常 处理  
_data_abort:        .word data_abort                @ 数据读取异常  
_not_used:      .word not_used                      @ 空位处理  
_irq:           .word irq                           @ 普通中断处理  
_fiq:           .word fiq                           @ 快速中断处理  

undefined_instruction:                              @ undefined_instruction 地址存放要执行的内容  
        nop  

software_interrupt:                                 @ software_interrupt 地址存放要执行的内容  
        nop  

prefetch_abort:                                     @ prefetch_abort 地址存放要执行的内容  
        nop  

data_abort:                                         @ data_abort 地址存放要执行的内容  
        nop  

not_used:                                           @ not_used 地址存放要执行的内容  
        nop  

irq:                                                @ irq 地址存放要执行的内容  
        nop  

fiq:                                                @ fiq 地址存放要执行的内容  
        nop  

reset:                                              @ reset 地址存放要执行的内容  
        nop  




2. 链接器脚本


gboot.lds 链接器脚本 代码解析 :

  • 1.指明输出格式 ( 处理器架构 ) : 使用 OUTPUT_ARCH(架构名称) 指明输出格式, 即处理器的架构, 这里是 arm 架构的, OUTPUT_ARCH(arm) ;
  • 2.指明输出程序的入口 : 设置编译输出的程序入口位置, 语法为 ENTRY(入口位置), 在上面的 Start.S 中设置的程序入口是 _start, 代码为 ENTRY(_start) ;
  • 3.设置代码段 : 使用 .text : 设置代码段;
  • 4.设置数据段 : 使用 .data : 设置数据段;
  • 5.设置 BSS 段 : 使用 .bss : 设置 BSS 段;
    • ( 1 ) 记录 BSS 段的起始地址 : bss_start = .; ;
    • ( 2 ) 记录 BSS 段的结束地址 : bss_end = .; ;
  • 6.对齐 : 每个段都需要设置内存的对齐格式, 使用 . = ALIGN(4); 设置四字节对齐即可;
  • 7.代码示例 :
OUTPUT_ARCH(arm)        /*指明处理器结构*/  
ENTRY(_start)           /*指明程序入口 在 _start 标号处*/  
SECTIONS {                
    . = 0x50008000;     /*整个程序链接的起始位置, 根据开发板确定, 不同开发板地址不一致*/  

    . = ALIGN(4);       /*对齐处理, 每段开始之前进行 4 字节对齐*/  
    .text :             /*代码段*/  
    {  
    start.o (.text)     /*start.S 转化来的代码段*/  
    *(.text)            /*其它代码段*/  
    }  

    . = ALIGN(4);       /*对齐处理, 每段开始之前进行 4 字节对齐*/  
    .data :             /*数据段*/  
    {  
    *(.data)  
    }  

    . = ALIGN(4);       /*对齐处理, 每段开始之前进行 4 字节对齐*/  
    bss_start = .;      /*记录 bss 段起始位置*/  
    .bss :              /*bss 段*/  
    {  
    *(.bss)   
    }  
    bss_end = .;        /*记录 bss 段结束位置*/  
} 




3. Makefile 编译脚本


makefile 文件编写 :

  • 1.通用规则 ( 汇编文件编译规则 ) : 汇编文件 编译 成同名的 .o 文件, 文件名称相同, 后缀不同, %.o : %.S, 产生过程是 arm-linux-gcc -g -c $^ , 其中 ^ 标识是所有的依赖文件, 在该规则下 start.S 会被变异成 start.o ;
  • 2.通用规则 ( C 文件编译规则 ) : C 代码编译成同名的 .o 文件, %.o : %.c , 产生过程是 arm-linux-gcc -g -c $^ ;
  • 3.设置最终目标 : 使用 all: 设置最终编译目标;
    • ( 1 ) 依赖文件 : 产生最终目标需要依赖 start.o 文件, 使用 all: start.o 表示最终目标需要依赖该文件;
    • ( 2 ) 链接过程 : arm-linux-ld -Tgboot.lds -o gboot.elf $^, 需要使用链接器脚本进行连接, ①链接工具是 arm-linux-ld 工具, ②使用 -Tgboot.lds 设置链接器脚本 是刚写的 gboot.lds 链接器脚本, ③输出文件是 gboot.elf 这是个中间文件, ④ 依赖文件是 $^ 代表所有的依赖;
    • ( 3 ) 转换成可执行二进制文件 : arm-linux-objcopy -O binary gboot.elf gboot.bin, 使用 -O binary 设置输出二进制文件, 依赖文件是 gboot.elf, 输出的可执行二进制文件 即 结果是 gboot.bin ;
  • 4.makefile 文件内容 :
all: start.o #依赖于 start.o  
    arm-linux-ld -Tgboot.lds -o gboot.elf $^    #使用链接器脚本, 将 start.o 转为 gboot.elf  
    arm-linux-objcopy -O binary gboot.elf gboot.bin #将 gboot.elf 转化为可以直接在板子上执行的 gboot.bin 文件  

%.o : %.S   #通用规则, 如 start.o 是由 start.S 编译来的, -c 是只编译不链接  
    arm-linux-gcc -g -c $^  

%.o : %.c   #通用规则, 如 start.o 是由 start.c 编译来的, -c 是只编译不链接  
    arm-linux-gcc -g -c $^  

.PHONY: clean     
clean:              #清除编译信息  
    rm *.o *.elf *.bin  




4. 编译输出可执行文件


编译过程 :

  • 1.文件准备 : 将 汇编代码 ( start.S ) 链接器脚本 ( gboot.lds ) makefile 文件 拷贝到编译目录 ;
  • 2.执行编译命令 : make ;
  • 3.编译结果 : 可以看到 生成了 编译目标文件 start.o, 链接文件 gboot.elf, 可执行的二进制文件 gboot.bin ;
    【嵌入式开发】ARM 异常向量表 ( 异常概念 | 异常处理流程 | 异常向量 | 汇编代码 )


本博客的参考文章及相关资料下载 :