欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python django使用haystack:全文检索的框架(实例讲解)

程序员文章站 2024-02-25 10:53:16
haystack:全文检索的框架 whoosh:纯Python编写的全文搜索引擎 jieba:一款免费的中文分词包 首先安装这三个包 pip install dja...

haystack:全文检索的框架

whoosh:纯Python编写的全文搜索引擎

jieba:一款免费的中文分词包

首先安装这三个包

pip install django-haystack
pip install whoosh
pip install jieba

1.修改settings.py文件,安装应用haystack,

2.在settings.py文件中配置搜索引擎

HAYSTACK_CONNECTIONS = {
 'default': {
  # 使用whoosh引擎
  'ENGINE': 'haystack.backends.whoosh_cn_backend.WhooshEngine',
  # 索引文件路径
  'PATH': os.path.join(BASE_DIR, 'whoosh_index'),
 }
}
# 当添加、修改、删除数据时,自动生成索引
HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'

3. 在templates目录下创建“search/indexes/blog/”目录 采用blog应用名字下面创建一个文件blog_text.txt
#指定索引的属性

{{ object.title }}
{{ object.text}}
{{ object.keywords }}

python django使用haystack:全文检索的框架(实例讲解)

4.在需要搜索的应用下面创建search_indexes

from haystack import indexes
from models import Post #指定对于某个类的某些数据建立索引
class GoodsInfoIndex(indexes.SearchIndex, indexes.Indexable): 
 text = indexes.CharField(document=True, use_template=True)
 def get_model(self):  
 return Post #搜索的模型类
 def index_queryset(self, using=None):  
  return self.get_model().objects.all()

python django使用haystack:全文检索的框架(实例讲解)

5.

1. 修改haystack文件

2. 找到虚拟环境py_django下的haystack目录 这个目录根据自己使用的python环境不同,路径也不一样。

3. site-packages/haystack/backends/ 创建一个文件名为ChineseAnalyzer.py文件写入下面代码,用于中文分词

import jieba
from whoosh.analysis import Tokenizer, Token
 class ChineseTokenizer(Tokenizer):
 def __call__(self, value, positions=False, chars=False,
     keeporiginal=False, removestops=True,
     start_pos=0, start_char=0, mode='', **kwargs):
  t = Token(positions, chars, removestops=removestops, mode=mode,
     **kwargs)
  seglist = jieba.cut(value, cut_all=True)
  for w in seglist:
   t.original = t.text = w
   t.boost = 1.0
   if positions:
    t.pos = start_pos + value.find(w)
   if chars:
    t.startchar = start_char + value.find(w)
    t.endchar = start_char + value.find(w) + len(w)
   yield t
 def ChineseAnalyzer():
 return ChineseTokenizer()

6.

1. 复制whoosh_backend.py文件,改为如下名称

whoosh_cn_backend.py

在复制出来的文件中导入中文分词模块

from .ChineseAnalyzer import ChineseAnalyzer

2. 更改词语分析类 改成中文

查找analyzer=StemmingAnalyzer()改为analyzer=ChineseAnalyzer()

7. 最后一步就是建初始化索引数据

python manage.py rebuild_index

8. 创建搜索模板 在templates/indexes/ 创建search.html模板

搜索结果进行分页,视图向模板中传递的上下文如下

query:搜索关键字

page:当前页的page对象

paginator:分页paginator对象

9. 在自己的应用视图中导入模块

from haystack.generic_views import SearchView

定义一个类重写get_context_data 方法,这样就可以往模板中传递自定义的上下文。

class GoodsSearchView(SearchView):
  def get_context_data(self, *args, **kwargs):
    context = super().get_context_data(*args, **kwargs)
    context['iscart']=1
    context['qwjs']=2
    return context

应用的urls文件中添加这条url 将类当一个视图的方法使用 .as_view()

url('^search/$', views.BlogSearchView.as_view())

以上这篇python django使用haystack:全文检索的框架(实例讲解)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。