欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

c#数学表示法(后缀表示法)详解

程序员文章站 2024-02-24 22:34:04
在笔试中有这么一道题目,写出一个表达式的后缀表示形式,当时就迷茫了,什么是后缀表达式,还真没听过。后来查了下原来是一种比较特殊的数学表达式,因为在日常生活中用的不多,不太了...

在笔试中有这么一道题目,写出一个表达式的后缀表示形式,当时就迷茫了,什么是后缀表达式,还真没听过。后来查了下原来是一种比较特殊的数学表达式,因为在日常生活中用的不多,不太了解。有三种表达式:前缀表达式、中缀表达式和后缀表达式。一般用的是中缀,比如1+1,前后缀就是把操作符移到前面和后面,下面我就来介绍一下这三种表达式。

1.前缀表示法

前缀表示法又叫波兰表示法,他的操作符置于操作数的前面(例:+ 1 2),是波兰数学家扬·武卡谢维奇1920年代引入的,用于简化命题逻辑。因为我们一般认为操作符是在操作数中间的,所以在日常生活中用的不多,但在计算机科学领域占有一席之地。一般的表示法对计算机来说处理很麻烦,每个符号都要考虑优先级,还有括号这种会打乱优先级的存在,将使计算机花费大量的资源进行解析。而前缀表示法没有优先级的概念,他是按顺序处理的。
举个例子:9-2*3这个式子,计算机需要先分析优先级,先乘后减,找到2*3,再进行减操作;化成前缀表示法就是:- 9 * 2 3,计算机可以依次读取,操作符作用于后一个操作数,遇到减就是让9减去后面的数,而跟着9的是乘,也就是说让9减去乘的结果,这对计算机来说很简单,按顺序来就行了。
再看一个复杂点的前缀表达式:

复制代码 代码如下:

- * / 15 - 7 + 1 1 3 + 2 + 1 1
- * / 15 - 7   2   3 + 2 + 1 1
- * / 15     5     3 + 2 + 1 1
- *        3       3 + 2 + 1 1
-          9         + 2 + 1 1
-          9         + 2   2 
-          9         4       
                5

这是一个前缀表达式的计算过程,可以看出每次只需计算第一个满足操作符后跟两个操作数的式子,直到最后就是结果了。

2.中缀表示法

这也就是我们一般的表示法,他的操作符置于操作数的中间(例:1 + 2),前面也说过这种方法不容易被计算机解析,但他符合人们的普遍用法,许多编程语言也就用这种方法了。在中缀表示法中括号是必须有的,要不然运算顺序会乱掉。因为很常用我也就不多讲了。

3.后缀表示法

后缀表示法又叫逆波兰表示法,他的操作符置于操作数的后面(例:1 2 +),他和前缀表示法都对计算机比较友好,但他很容易用堆栈解析,所以在计算机中用的很多。他的解释过程一般是:操作数入栈;遇到操作符时,操作数出栈,求值,将结果入栈;当一遍后,栈顶就是表达式的值。因此逆波兰表达式的求值使用堆栈结构很容易实现,和能很快求值。
注意:逆波兰记法并不是简单的波兰表达式的反转。因为对于不满足交换律的操作符,它的操作数写法仍然是常规顺序,如,波兰记法“/ 6 3”的逆波兰记法是“6 3 /”而不是“3 6 /”;数字的数位写法也是常规顺序。
为了更好的了解前缀表达式的计算过程,举个例子:5 1 2 + 4 * + 3 -,计算过程如下

复制代码 代码如下:

栈空间     //解释说明
5
5 1
5 1 2
5 3       //遇到+,1和2出栈,得3,入栈
5 3 4
5 12      //遇到*,3和4出栈,得12,入栈
17        //遇到+,5和12出栈,得17,入栈
17 3
14        //遇到-,17和3出栈,得14,入栈

最后在栈里只有一个操作数,这就是计算结果。由此我们可以看出用堆栈是很容易解析后缀表达式的。

4.表示法间转化

这里介绍一种简单的中缀表达式转化前后缀表达式的方法,比如这个式子:a+b*c-(d+e)。
1.按照运算符的优先级对所有的运算单位加括号
式子变成:((a+(b*c))-(d+e))。
2.1.前缀表达式,把运算符号移动到对应的括号前面
式子变成:-( +(a *(bc)) +(de))
去掉括号:-+a*bc+de
2.2.后缀表达式,把运算符号移动到对应的括号后面
式子变成:((a(bc)* )+ (de)+ )-
去掉括号:abc*+de+-