hdu 6400 Parentheses Matrix
程序员文章站
2024-02-24 15:10:12
...
题目:点击打开链接
题意: 给一个只含'('和')'的矩阵,只考虑从行和列上的括号序列,构造一个矩阵使得合法括号序列的总数最多。
分析:构造,分类讨论。首先奇数行或奇数列内是不存在合法括号序列的,所以如果n或m是奇数,则最多有n/m个括号序列(即把行/列直接填充为合法序列),需要分析的是偶数行和偶数列的情况。
首先贪心一下,起点位于第一行和第一列,所以应该尽量在这些位置填'(',首先想到的是把矩形的左上边界填充为'(',右下边界填充为')'
.((((.
(....)
(....)
(....)
(....)
.)))).
因为第一行,第n行,第1列,第m列一定不是序列,所以这样最多有n+m-4个合法括号序列。
但有一个情况比较特殊,当n=4的时候,上面的方法其实比较亏,以牺牲第一列和最后一列的代价,却只得到了两行合法括号序列。考虑另外一种填充方法:当n比较小的时候,把第一行全部填充为'(',最后一行全部填充为')'
((((((
......
......
))))))
这样以后发现,可以通过调整剩下的位置,让剩下一半的行数成为合法的序列,于是这样最多有(n-2)/2+m=n/2-1+m个合法括号序列
比较一下上面两种方案,假设a>b,当第一种最多a+b-4,第二种最多a+b/2-1,当他们相等时,a+b-4=a+b/2-1,解得b=6,也就是行数列数最小值小于6的时候,应该采用第二种方案能获得更多,而其他情况应该选择第一种情况
代码:
#pragma comment(linker, "/STACK:102400000,102400000")///手动扩栈
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<string>
#include<cstdio>
#include<bitset>
#include<vector>
#include<cmath>
#include<ctime>
#include<stack>
#include<queue>
#include<deque>
#include<list>
#include<set>
#include<map>
using namespace std;
#define debug test
#define mst(ss,b) memset((ss),(b),sizeof(ss))
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define ll long long
#define ull unsigned long long
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
#define eps 1e-10
#define PI acos(-1.0)
typedef pair<int,int> PII;
const ll mod = 1e9+7;
const int N = 1e6+10;
ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
ll qp(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
int to[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
int t,h,w;
char s[300][300];
int main() {
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
cin>>t;
while(t--) {
cin>>h>>w;
int rev=0;
if(h&1) {
if(w&1) {
rep(i,1,h) rep(j,1,w) s[i][j]='(';
}else {
rep(i,1,h) rep(j,1,w)
if(j&1) s[i][j]='(';
else s[i][j]=')';
}
}else {
if(w&1) {
rep(i,1,h) rep(j,1,w)
if(i&1) s[i][j]='(';
else s[i][j]=')';
}else {
if(h>w) {
rev=1;
swap(h,w);
}
if(h==2) {
rep(i,1,w) s[1][i]='(',s[2][i]=')';
}else if(h==4) {
rep(i,1,w) {
s[1][i] = '(';
s[2][i] = i>w/2 ? '(' : ')';
s[3][i] = i>w/2 ? ')' : '(';
s[4][i] = ')';
}
}else {
rep(i,1,w) s[1][i]='(',s[h][i]=')';
rep(i,2,h-1) {
if(i&1) {
s[i][1]='(',s[i][w]=')';
rep(j,2,w-1) s[i][j]='(',j++,s[i][j]=')';
}else {
rep(j,1,w) s[i][j]='(',j++,s[i][j]=')';
}
}
}
}
}
if(rev) {
rep(i,1,w) {
rep(j,1,h) cout<<s[j][i];
cout<<endl;
}
}else {
rep(i,1,h) {
rep(j,1,w) cout<<s[i][j];
cout<<endl;
}
}
}
return 0;
}
参考博客:http://www.cnblogs.com/tobyw/p/9483865.html
下一篇: JSP的login程序代码
推荐阅读
-
hdu 6400 Parentheses Matrix
-
hdu6400 Parentheses Matrix 构造
-
2018HDU多校赛第四场Problem E. Matrix from Arrays
-
hdu4313 Matrix(kruskal思想+并查集)
-
hdu 5671 Matrix(BC——思维题)
-
【hdu 6336】 Matrix from Arrays
-
HDU 6336 Matrix from Arrays(循环节)
-
hdu 6336 Matrix from Arrays
-
HDU 6336 Problem E. Matrix from Arrays(找规律)
-
hdu6336 多校第四场E题 Matrix from Arrays