python中MultiProcessing库的深入讲解
之前接触过一点这个库,但是并没有深入研究,这次闲着无聊就研究了一下,算是解惑吧。
今天先研究下apply_async与map方法。传闻就是这两个方法分配进程池中的进程给相关函数,我想验证下。
看下官网对这两个的解释:
apply_async(func[, args[, kwds[, callback[, error_callback]]]])
A variant of the apply() method which returns a result object.
If callback is specified then it should be a callable which accepts a single argument. When the result becomes ready callback is applied to it, that is unless the call failed, in which case the error_callback is applied instead.
If error_callback is specified then it should be a callable which accepts a single argument. If the target function fails, then the error_callback is called with the exception instance.
Callbacks should complete immediately since otherwise the thread which handles the results will get blocked.
map(func, iterable[, chunksize])
A parallel equivalent of the map() built-in function (it supports only one iterable argument though). It blocks until the result is ready.
This method chops the iterable into a number of chunks which it submits to the process pool as separate tasks. The (approximate) size of these chunks can be specified by setting chunksize to a positive integer.
Pool可以提供指定数量的进程供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来运行它
下面看下程序吧:
from multiprocessing import Poolimport timeimport osdef func(msg):print('msg: %s %s' % (msg, os.getpid())) time.sleep(3)print("end")if __name__ == '__main__': pool = Pool(4)for i in range(4): msg = 'hello %d' % (i) pool.apply_async(func, (msg, ))# pool.map(func, range(4))print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~") pool.close() pool.join() # 调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束print("Sub-process(es) done.")
运行结果:
去掉map注释,在apply_async函数处加上注释
看下进程池进程不够的情况下的程序及运行结果:
from multiprocessing import Poolimport timeimport osdef func(msg):print('msg: %s %s' % (msg, os.getpid())) time.sleep(3)print("end")if __name__ == '__main__': pool = Pool(3)'''for i in range(4): msg = 'hello %d' % (i) pool.apply_async(func, (msg, ))'''pool.map(func, range(4))print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~") pool.close() pool.join() # 调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束print("Sub-process(es) done.")
程序结果:
可以看到,如果进程池的进程数量大于等于所要运行的函数的次数,那就可以很顺利,而且看着结果也很理所当然;但是如果进程池的进程的数量小于所要运行的函数的次数,那么就会有一个进程发生阻塞,即两个或多个函数共用一个进程.
而且,apply_async函数的第二个参数传入的是一个参数值,一旦运行这个函数,就会分配一个进程给函数,注意是异步的哦,因此如果需要分配多个进程就需要有一个for循环或是while循环;对于map函数,其第二个参数值接收的是一个迭代器,因此就不用在用for循环了。要记住,这两个函数所实现的就是依次将进程池里的进程分配给函数。
顺便吐槽下,全英文的 MultiProcessing官网 看的很懵逼痛苦,又很有意思,不得不说,对英语还是很有帮助的.....
以上就是python中MultiProcessing库的深入讲解的详细内容,更多请关注其它相关文章!
推荐阅读
-
Python中asyncio模块的深入讲解
-
举例讲解Python中的死锁、可重入锁和互斥锁
-
Python的Flask框架中配置多个子域名的方法讲解
-
用实例详解Python中的Django框架中prefetch_related()函数对数据库查询的优化
-
对Python中list的倒序索引和切片实例讲解
-
深入理解Python中的元类(metaclass)
-
Python2和Python3中urllib库中urlencode的使用注意事项
-
Python multiprocessing模块中的Pipe管道使用实例
-
python3解析库pyquery的深入讲解
-
在Python3中使用asyncio库进行快速数据抓取的教程